Reducing Energy Consumption Using Artificial Intelligence

Patrick McCafferty, P.E.

January 25, 2022

Problem statement

Traditional pumping systems are programmed to satisfy operational and process requirements, and they work; however, **energy optimization** and **efficiency** are rarely considered.

This results in:

- 1) Excessive energy consumption
- 2) Wasted money
- 3) Shorter pumping system lifespan

Real-World Example

(simulated in the lab)

A four-pump wastewater pump station with identically sized pumps working in a lead/lag1/lag2/standby configuration to **maintain** a wet well level setpoint. The horsepower of each pump is 139 HP and has a power factor of 0.883.

https://images.app.goo.gl/SWmeTvQiuzUBc5y46

Control Strategy – Conventional Method of Programming & Control

Conventional Method System Hardware Setup

Conventional Method of Programming & Control

Control Strategy – New Approach Using Artificial Intelligence (AI)

New Approach System Hardware Setup

* Although not shown, Ethernet switch on UPS power.

New Approach Using AI

Training Phase

Pump manufacturers provide the following information for each centrifugal pump

New Approach Using AI

Simulation...

Result and analysis

System Efficiency – Standard vs Optimized

Result and analysis (cont.)

System Power Consumption–Standard vs Optimized

Simulation...

Key Findings

Parameters	Standard Programming	Optimized Programming
No. of Pumps utilized	3 pumps	2 pumps
High Efficiency operation (< 5% deviation of BEP)	64.06% of total time	99.60% of total time
Lowest operating efficiency	49.20% efficiency (20.19% deviation from BEP)	64.01% efficiency (5.39% deviation from BEP)
Peak specific energy consumption	0.06 KW/GPM	0.044 KW/GPM
Peak Load	256.11 KW	146.15 KW

Project Benefits

Improvements in efficiency of pumping system results in

- reduced energy costs
- reduced maintenance requirements
- closer match between pumping system capacity and process requirements

At or near BEP, operating efficiency is highest and its radial bearing loads are lowest; hence a pump operating near its BEP results in significant operating cost savings in terms of both energy efficiency and maintenance.

Project Benefits

Life cycle cost analysis

 With average energy and up-time cost accounting for 52-70% of pump ownership costs; pumping system efficiency improvements provide simple payback periods of several weeks to a few years by reducing energy cost and maintenance requirements.

* Electricity cost assumed @ 13 cents/KWh

Contact me to find out more!

Patrick McCafferty, P.E. Automation Artificial Intelligence Team Leader CDM Smith, Inc. mccaffertyp@cdmsmith.com O: 617-452-6430 C: 617-778-3098