

Simulating Side-Stream EBPR (S2EBPR) in Full-Scale and Pilot-Scale Demonstration Studies

Modeling Approaches and Challenges

Varun Srinivasan, PhD <u>Ph: (</u>978) 983-2045 <u>Email: VSrinivasan@brwncald.com</u>

Co-authors:

Mark Miller, Jose Jimenez, Adam Klein – **Brown and Caldwell**; Jackie Jarrell – **Charlotte Water**; James Barnard – **Black & Veatch**; Peter Dold, Daniela Conidi – **EnviroSim Associates Ltd.**

EBPR is a complex process

Modeling EBPR

Adapted from Santos et al., 2019

	ASM2d (Henze et al., 1999)	ASM2d + TUD (Meijer, 2004)	UCTPHO + (Hu et al., 2007)	Barker & Dold (Barker and Dold, 1997)	META-ASM (This study)		
# of EBPR processes	PAOs: 8	PAOs: 11	PAOs: 18	PAOs: 19	PAOs: 41		
	(GAOs activity neglected)	(GAOs activity neglected)	(GAOs activity neglected)	(GAOs activity neglected)	Two GAO groups: CPOs ^a : 21 DFOs ^b : 16		
Fermentation	Transformation (VFA)	Transformation (VFA ^e)	Transformation (VFA)	Anaerobic growth process (VFA)	Anaerobic growth process focused on distribution of fermentation products (Ac ^c , Pr ^d and H ₂) Different fermentation yields determined experimentally		
Endogenous process in PAOs and GAOs	PAO: death- regeneration	PAO: endogenous respiration/cell maintenance	PAO: endogenous respiration/cell maintenance and death-regeneration	PAO: endogenous respiration/cell maintenance and death-regeneration	Endogenous respiration/cell maintenance and death-regeneration		
Energy source for anaerobic maintenance of PAOs and GAOs	No	PAO: Polyphosphate	PAO: Polyphosphate	PAO: Polyphosphate	PAO: polyphosphate and glycogen GAO: glycogen		
Origin of reducing powe and energy source in the anaerobic PAO metabolism	r Reducing power: neglected; Energy: polyphosphat	Reducing power: Glycolys Energy: polyphosphate an glycogen	Reducing power sis neglected; nd Energy: polyphosphate	Reducing power: neglect Energy: polyphosphate	ed; Reducing power: Glycolysis and others e (e.g. TCA and propionyl-CoA conversion to acetyl-CoA); Energy: polyphosphate and glycogen		
\langle			Cc	mplexity			
	\bigvee						

Calibration Techniques, Hydrolysis and Fermentation, Temperature Dependence

McAlpine Creek WWMF S2EBPR Demonstration Study

North AT 7-9 Plant: ABAC/MLE Configuration

RAS Fermenter Parameter	Value
Fermenter Volume	0.28 MG
Fraction of North AT 7-9	10.2%
RAS Flow	0.2-0.4 MGD
GTE Flow	0.3-0.7 MGD
HRT	8-12 hours
SRT	8-45 hours
Mixing	0.23 HP/kft ³

North Plant: Existing A/O Configuration

RAS Fermenter Parameter	Value
Fermenter Volume	0.58 MG
Fraction of North Plant	6.3%
RAS Flow	1.2-3.0 MGD
GTE Flow	2.0-2.6 MGD
HRT	3.6-4.3 hours
SRT	5-23 hours
Mixing	0.12 HP/kft ³

Operational Phases

North AT 7-9 Operational Phases

North Plant Operational Phases

Modeling Approach

Ex-Situ Calibration

Model

Activity Tests// Long Term Fermentation Test

Hydrolysis // Modeling Challenges

- Model calibration in BioWin 6.2 suggested few issues
 - Hydrolysis rates were found to be variable between the gravity thickener, mainstream process and side-stream fermenters.
 - Significant change in hydrolysis factors had to be made to match both activity test and plant performance data.
 - Propionate utilization stoichiometry also varied between different processes, and this could not be adjusted in the model.
 - Transition between A/O to MLE not captured well by the model.

Hydrolysis // Model Changes

EnviroSim embarked on an intensive study to re-evaluate hydrolysis modeling

- Changed the traditional hydrolysis IWA ASM type model
- Adopted a new hydrolysis formulation based on standard product inhibition kinetics
- Accumulation of rbCOD from hydrolysis slows down the rate
- New hydrolysis formulation depends on biomass concentration, particulate substrate concentration, and the concentration of rbCOD from hydrolysis
- Neta factor (η) for adjusting the rate under AS unaerated conditions (anoxic or anaerobic) or AD

ame	Default	Value	Arrhenius		
ydrolysis rate [1/d]	2.1000	2.1000	1.0290		
ydrolysis half sat. [-]	0.0600	0.0600	1.0000		
xternal organics hydrolysis rate [1/d]	2.1000	2.1000	1.0290		
xternal organics hydrolysis half sat. [-]	0.0600	0.0600	1.0000		
ydrolysis factor - unaerated [-]	1.0000	1.0000	1.0000		
ydrolysis product inhibition factor (AS) [-]	0.1000	0.1000	1.0000		
ydrolysis product inhibition factor (AD) [-]	0.1000	1.0000	1.0000		
dsorption rate of colloids [L/(mgCOD d)]	0.1500	0.1500	1.0290		
mmonification rate [L/(mgCOD d)]	0.0800	0.0800	1.0290		
ssimilative nitrate/nitrite reduction rate [1/d]	0.5000	0.5000	1.0000		
ndogenous products decay rate [1/d]	0	0	1.0000		

PAO// Kinetics and Stoichiometry

- Phosphorus accumulating shows newly surfaced propionate sequestration rate. Default is identical to acetate.
- New default Max. spec. growth rate will likely be 1.3 [1/d].
- New default Anoxic growth factor may be changed to 0.5.
 - McAlpine calibration worked well with the current default anoxic growth factor of 0.33.
- Temperature dependence of PAO kinetics increased from default of 1.0 (no dependence) to 1.0290

Parameters				
lame	Default	Value	Arrhenius	
iax. spec. growth rate [1/d]	0.9500	1.3000	1.0290	
Max. spec. growth rate, P-limited [1/d]		0.4200	1.0000	
Substrate half sat. [mgCOD(PHA)/mgCOD(Zbp)]		0.1000	1.0000	
Substrate half sat., P-limited [mgCOD(PHA)/mgCOD(Zbp)]		0.0500	1.0000	
Magnesium half sat. [mgMg/L]		0.1000	1.0000	
Cation half sat. [mmol/L]		0.1000	1.0000	
Calcium half sat. [mgCa/L]		0.1000	1.0000	
Anoxic growth factor [-]		0.3300	1.0000	
Denite PAO N2 producers (NO3 or NO2) [-]		1.0000	1.0000	
Aerobic/anoxic decay rate [1/d]		0.1000	1.0000	
Aerobic/anoxic maintenance rate [1/d]		0	1.0000	
Anaerobic decay rate [1/d]		0.0400	1.0000	
Anaerobic maintenance rate [1/d]		0	1.0000	
Acetate sequestration rate [1/d]		4.5000	1.0000	
ropionate sequestration rate [1/d]	4.5000	4.5000	1.0000	

Results// Small RAS Fermenter Effluent

- P concentration reflects complete release of stored Poly-P in the RAS
 - Yield of Low PP = 0.995 (new default)
- P concentration impacted by changing dilution with changing GTE flow
- Model also tracks the ammonia concentration which can be used as a surrogate for hydrolysis.

Results// Small RAS Fermenter Hydrolysis and Fermentation

Results// North AT 7-9 Secondary Effluent TP and OP

Validation of Model Calibration

Central Valley WRF S2EBPR Pilot

Central Valley WRF Pilot

Phase 2 – SSRC (Anaerobic HRT = 2 hrs)

Validation of BioWin 6.3 Model

- Used same parameters as McAlpine calibration.
- Default values in BW 6.3.

Conclusions and Future Outlook

- A combination of in-situ and ex-situ calibrations can yield a more robust calibration of full-scale models for S2EBPR.
- A deeper understanding and improved modeling of hydrolysis and fermentation is critical to simulate EBPR processes.
- It is important to calibrate full-scale S2EBPR models to model temperature effects on hydrolysis and PAO metabolism.
- Validation of developed models with more full-scale S2EBPR systems is important with a focus on transferrable calibration parameters.

Thank you. Questions?

Ph: (978) 983-2045 Email: VSrinivasan@brwncald.com

