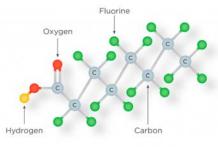


New England Water Environment Association

Drying and Thermal Treatment Technologies for Biosolids Management

October 7, 2021

Today's Agenda


 Biosolids Management Dryer Feasibility Case Study: LAWPCA 3. Post-Drying Thermal Technologies 4. Questions

Biosolids Management

PFAS Concerns

Maine DEP Establishes Aggressive Requirement for PFAS Testing in Biosolids

Presque Isle to spend \$15.6M fixing its wastewater sludge problem

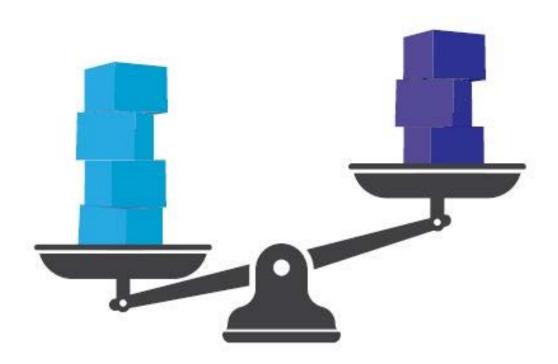
Maine DEP enacts biosolids screenings standards

Concerns grow over tainted sewage sludge spread on croplands

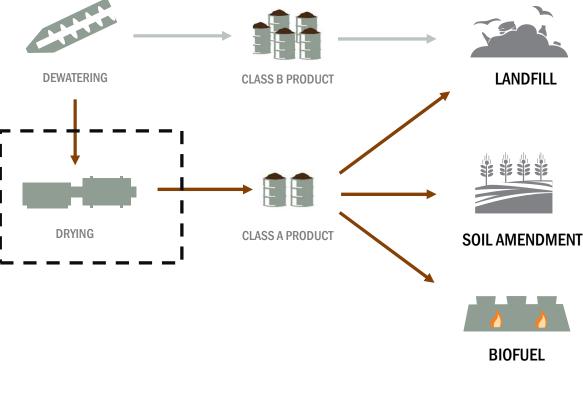
Bulk agriculture land application of biosolids slows to a halt...

Market Overview

- Across the Eastern US, landfill costs are going up 50-200%
- Landfills are getting tired of biosolids
- In the Northeast, land application opportunities are limited
- PFAS concerns exerting additional pressures (PFAS riders in contracts)
- Have observed management costs as high \$200/WT in New England


Why Evaluate Thermal Drying

Pros


- Volume Reduction (70%-85%)
- Reduces Truck Traffic and Disposal Fees
- Class A Beneficial Reuse
- Less Odorous Product

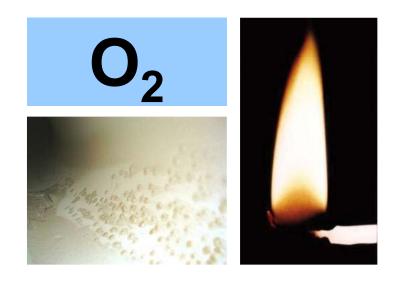
Cons

- Energy Consumption
- Safety Concerns
- Capital Investment
- Does Not Destroy PFAS

Drying as a Tool to Address Biosolids Management Risks

Reduced volume, moisture, content and odors makes dried product more amenable to landfilling

Opens up non-agricultural and soil or fertilizer blending outlets

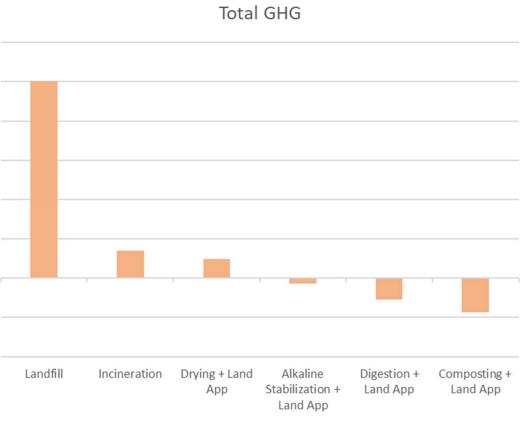

Can be used as alternative fuel for offsite industry or incorporated into future non-incineration destruction process

Energy Content of Solids

~8,000 Btu/Ib

Combustion Risk

- Oxygen
- Ignition Source
- Combustible Dust



Critical Temperatures	Degrees F
Temperature at which self heating can occur	±122
Minimum dust cloud ignition temperature (NFPA 654)	329

Source: UK HSE

Why Thermal Drying Now?

- Tipping point for management fees
- Can be compatible with GHG goals if beneficially used
- Emergence of lower-cost belt dryers

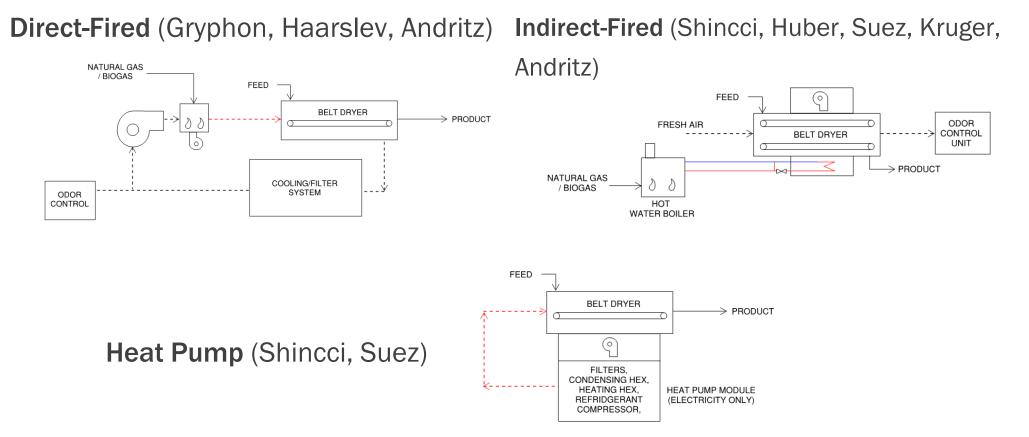
Dryer Feasibility Study: LAWPCA

Lewiston-Auburn Water Pollution Control Authority

- In 2020 Compost Facility closes, PFAS impacts land application
- Current Disposal consists of trucking digested sludge predominantly to offsite landfills
- Offsite disposal increased 70% to \$95 a ton (including transport)
- PFAS concerns continue, future impacts are unknown
 - USEPA risk assessment ongoing
 - Maine PFAS surcharge fee being considered

Design Capacity

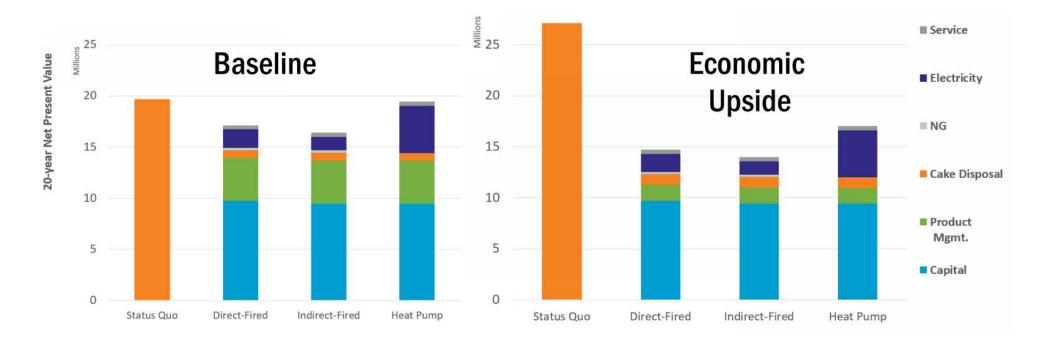
- Average flow: 14 MGD
- Average Solids Production: 17 wtpd anaerobically digested


Existing Conditions

High-Level Dryer Overview and Screening

	Rotary Drum	Belt	Contact (Paddle)
Greenfield Dryer Installation at Small – Medium Sized Facility			
Appropriate to Size	2-3d/wk operation	Can run 24/7	Can run 24/7
Operational Complexity	Highest	Moderate	Lower (8hr shutdown)
Capital Cost	3.0x	1.0x	1.5x
Product Quality	Highest	Moderate	Lowest/Dustiest

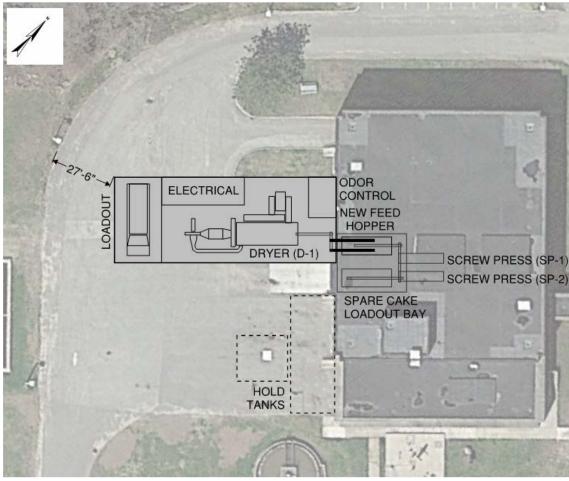
Belt Dryer Type Comparison: Heating


Belt Dryer Commercial Offerings

Established				
Manufacturer	US Installs	Operating Yrs.	Heating	Product Screening
Andritz	5	40	Direct/Indirect/Heat Pump	Y
Huber	5	16	Indirect	Ν
Kruger	7	62	Indirect	Ν
Emerging				
Manufacturer	US Installs	Operating Yrs.	Heating	Product Screening
Gryphon	2	2	Direct	Ν
Haarslev	3	11	Direct	Y
Shincci	2	1	Heat Pump	Ν
Suez	2	1	Indirect/Heat Pump	Ν

Dried Solids Market Analysis Findings

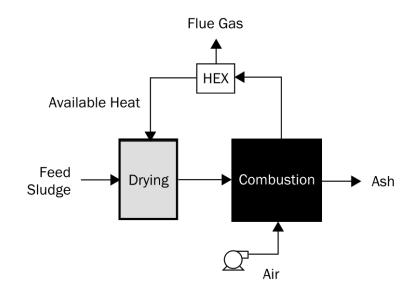
- There are limited bulk agricultural outlets for reuse of dried biosolids product with normal PFAS levels
- Application rates for bulk agriculture determined based on
 - PFAS sampling levels
 - Soil loading calculation spreadsheet (application rate and recurrence)
 - Assumed soil background levels (2019 Vermont background study)
- Most potential for reuse in non-agricultural soil or fertilizer blending


Report Review: Cost Comparison

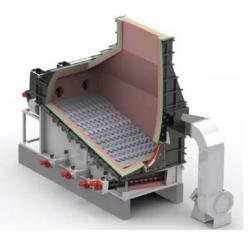
Recommended Alternative: Indirect-Fired Belt Dryer with Building Addition

Key Advantages

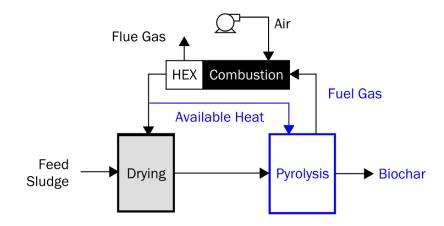
- Class A product
- Utilizes Waste Heat from Biogas
 Cogeneration
- Lower Operating Temps for Safety in Operation



Post-Dryer Thermal Processes


Pellet Furnace (Incineration)

Overview	
Process Air	>stoichiometric
Reactor Temp	800 - 980°C (<1,150°C)
Residuals	Mineral Ash

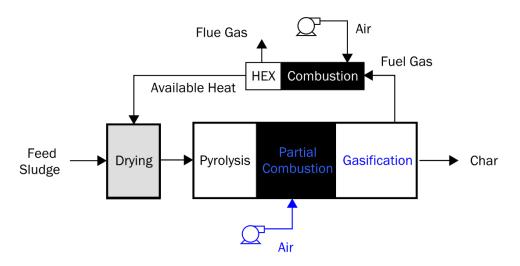

Buffalo, MN (2009)

- 15 wet tons per day
- Reported to save 70% -80% of fuel costs with 95% mass reduction

Courtesy of Veolia

Pyrolysis

Overview	
Process Air	None
Reactor Temp	300-850°C
Fuel Gas Oxidizer	850 - 980°C (<1,150°C)
Residuals	Char (~40% - 50% Carbon)



Silicon Valley CWA, CA (2018)

- 15 wet tons per day
- Inclined Screw Reactor

Courtesy of BioForceTech

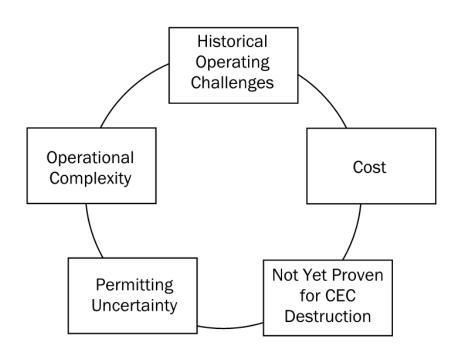
Gasification

Overview	
Process Air	<stoichiometric< td=""></stoichiometric<>
Reactor Temp	800 -1,000°C
Fuel Gas Oxidizer	850 - 980°C (<1,150°C)
Residuals	Char (~15% - 25% Carbon)

Morrisville, PA (2019)

- 35 wet ton/d
- Fluid Lift Reactor

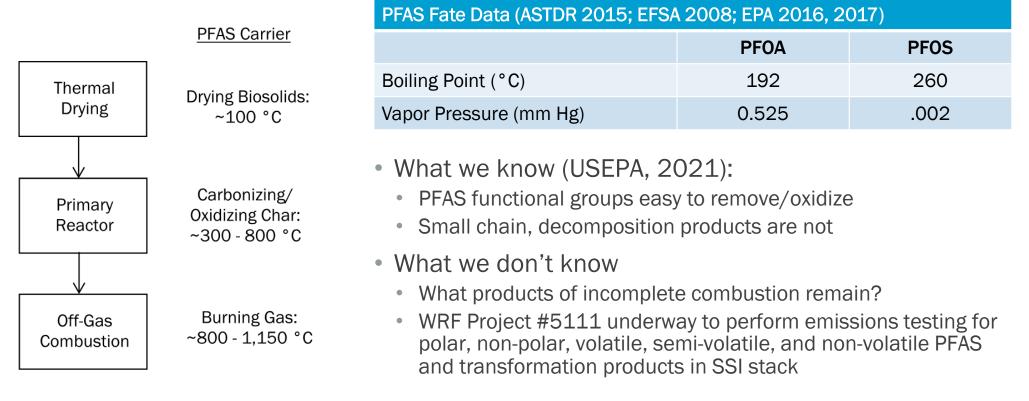
Courtesy of Ecoremedy


Lebanon, TN (2016)

 32 wet ton/d (wood, tires and biosolids (10%)

Courtesy of Aries Clean Tech₂₂

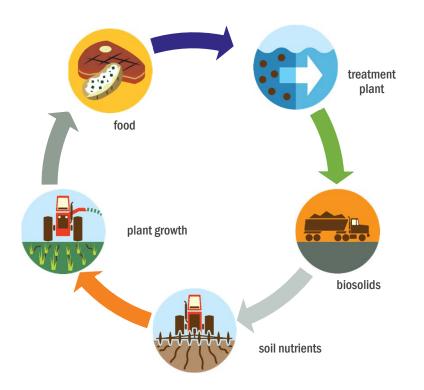
Innovation Curve


Barriers

Advancements

- Technology modifications to improve resiliency
- Multiple projects in development (with various implementation models)
- USEPA regulation development under way (advance notice released)
- CEC (PFAS) fate studies underway

PFAS Emissions Studies Update


<u>https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=539933;</u> Studying the Fate of PFAS through Sewage Sludge Incinerators | The Water Research Foundation (waterrf.org)

Conclusions

Conclusions

- Recent trends in solids management have made thermal drying a favorable solution to reduce programmatic risk
- In NE, chief benefit is volume reduction with potential diversification of outlets
- Appropriate technology selection and site-specific considerations critical to successful operation
- Drying can provide first step of PFAS treatment process

Thank you. Questions?

Don Song, P.E.

dsong@brwncald.com

John Ross, P.E. jross@brwncald.com

