

How Somerville is Planning for City-Wide Flood Resilience and Water Quality Improvements One (Vulnerable) Neighborhood at a Time

Haleemah Qureshi, City of Somerville David Bedoya, Dewberry

NEWEA Spring Conference June 9, 2021

City of Somerville

- Northwest of Boston
- Population: Approx. 81,600 (2018)
- Area: 4.2 square miles
- Combined System: 68 miles
- Sanitary system: 62 miles
- Storm drain: 35 miles

Flooding

somervillema.gov

NEWEA Spring Conference - June 9, 2021

City Response

City of Somerville Drainage

Current System Limitations

- Some of Somerville's drainage sewersheds are very large and converge at the MWRA outlet point.
- The MWRA system has limited capacity to accept additional flows, which result in CSOs for relief
- The trunk system was designed and built over a century ago with a different set of demands

On-Going Projects: Union Sq. Program

Main Challenges

- Vulnerable Neighborhoods
- NPDES Small MS4 General Permit requirements

Systematic Approach

• The City decided to approach these challenges in a systematic way:

- 1. Develop a plan on a sewershed by sewershed basis
- 2. Understand the main causes of flooding in each sewershed using the City's hydraulic model in a systematic way.
 - Systemic sewershed limitations
 - Trunk system limitations
 - Local conditions
- **3**. Develop interventions to mitigate flooding in vulnerable areas
- 4. Evaluate ways to reduce phosphorus loadings from proposed project areas
 - Structural BMPs (green and gray)
 - Non-structural BMPs (street sweeping, leaf litter collection, catch basin cleaning)

Sewershed C2

Sewershed C2 2019 Flood Complaints

Causes of Flooding – Systemic Flooding

Causes of Flooding – Trunk System Limitations

13 NEWEA Spring Conference - June 9, 2021

Vulnerable Areas after Union Sq. Program

Example Area – 10yr, 24h event

16

Example of Flood Mitigation Project – Lincoln Park Area

Results with Project Completed – 10yr, 24-hr event

Results with Project Completed – 10yr, 30-min event

Water Quality

- New Stormwater discharges are subject to phosphorus load limitations (62% reduction at a minimum)
- TP reduction alternatives analyzed
 - Structural BMPs
 - Gray: Filters, engineered media, settling tanks
 - Green: Curb bumpouts, sidewalk planters, rain gardens, sidewalk trenches
 - Non-structural BMPs: Street sweeping, leaflitter collection, catch basin cleaning

Water Quality – Gray-Type BMPs

- These BMPs are more targeted because they only have to deal with stormwater runoff that has entered the pipes and will be discharged to a stormwater main via a pump station.
 - A filter system could achieve up to a 60% TP removal if properly sized and maintained (based on manufacturer's data)
 - Settling tanks could reduce TP by 50% (based on literature values of how much TP attached to particles).

Source: Imbrium Systems

Source: Stormwater Rx

Water Quality – Green BMPs

- These BMPs are less targeted because they deal with surface runoff before it concentrates in pipes so they need to have a high level of coverage to achieve high TP removal values.
 - Identification of feasible public ROW areas
 - Location of GI sites within feasible areas
 - Selection of best GI type at each site
 - Compute TP removal effectiveness at each site

Water Quality – Green Infrastructure

Dewberry

Water Quality – Non-Structural BMPs

ВМР ТҮРЕ	Anticipated TP credit
Street Cleaning (Apr 1-Dec 1)	Monthly - 0.5%- 1.5%
	Bi-Weekly - 0.7% - 1.65%
	Weekly - 0.9% - 1.8%
Catch Basin Cleaning	Bi-annual - 1.3%
Leaf litter collection program	Yearly - 2.7%
TOTAL MAXIMUM	5.8%

Water Quality – Non-Structural BMPs Potential Scenarios

ВМР Туре	Anticipated Removal	Capital Cost	O&M Commitment
Non-Structural + GI	10-15%	Medium-High	High
Non-Structural + Filter	~65%	Medium	Medium-High
Non-Structural + Engineered Media	~86%	Medium	High/Very High
Non-Structural + Settling tanks	55%-60%	Low additional cost	Low additional cost

Next Steps

- Complete analysis in remaining sewersheds
- Compile sewershed analysis and recommend city-wide sequencing of interventions
- Develop a timeline for execution

Thank you

David Bedoya – dbedoya@dewberry.com Haleemah Qureshi – hqureshi@somervillema.gov

Water Quality – GI Feasibility Analysis

PARAMETER	CRITERION
Somerville ROW	In park, sidewalk or road
	adjacent to curb
Slope	Less than 5%
Soil Type	Hydrologic soil type A or B, C
	acceptable
Water, Sewer, Drain	3.5 feet clearance
Buildings	7 feet clearance
Trees	10 feet clearance
Parking Meters	5 feet clearance
Sidewalk	At least 4 feet wide
Railroad	25 feet clearance
Driveway/curb cut	5-foot clearance
Crosswalks/sidewalk ramps	5-foot clearance
Underground utilities (other	3.5-foot clearance
than sewer and drain)	
Groundwater	At least 7 feet below ground

Water Quality – Green-Type BMPs Selection

GSI TYPE	SITING PARAMETERS
Rain Garden	In a public space (park or existing green space) adjacent to impervious area
Planter Box	Sidewalk width: At least 9 feet
Curb Bumpout	 Parking Lane present (restrict width to the width of parking spot)
	 2-way streets with at least 26 ft combined width or One way with 16 feet of pavement clearance for Emergency Vehicles
Subsurface	Available footprint and drainage, but not enough space for either bumpout or
Trench	planter box