ADDRESSING A GROWING FOG ISSUE

Designing Treatment Improvements to Address Residential FOG Issues in the City of Gloucester, Massachusetts

PARTNERS

SPEAKERS

Andrew Grota, PE SENIOR PROJECT ENGINEER atg@envpartners.com

Eric Kelley, PE PRINCIPAL eak@envpartners.com

WITH SUPPORT FROM

Ryan Marques, PE

CITY OF GLOUCESTER, MA

PRESENTATION OVERVIEW

- Background & Project Area
- Overview of FOG
- Preliminary Design Considerations
- Pilot Testing
- Final Design & Permitting Considerations
- Construction & Startup Schedule
- FOG System Start-Up
- Conclusion & Findings

BACKGROUND & PROJECT AREA

- City of Gloucester's sewer collection system consists of WPCF, 29 sewer pumping stations, and combination of gravity/pressure sewer piping
 - 30,430 residents (2019 Census)
 - Operated / maintained by Veolia North America
- Project area focused on three small sewer pump stations:
 - Finch Lane Pump Station
 - Corliss Avenue Pump Station
 - Thurston Point Road Pump Station
- ADF generally less than 100 gpm (mostly residential flow)

FOG ISSUES

- City implemented aggressive FOG program in 2012 for industrial / commercial users
- Included comprehensive educational program for residential users
- Despite efforts, City is plagued with FOG related issues that require frequent maintenance visits
 - Clean pump floats
 - Break-up FOG mats
 - Vactor out wet well
- Three pump stations in particular (Finch, Corliss, Thurston) particularly susceptible to high levels of FOG

PUMP STATION LOCATIONS

FOG: FATS, OILS & GREASE

- Includes animal fat, vegetable fat and oil used to cook and prepare food
- FOG causes blockages as it coagulates, which can result in SSO events that pollute the environment and damage properties
- EPA reports that FOG is leading cause (47%) of blockages leading to SSO events

PRELIMINARY DESIGN CONSIDERATIONS

- EP retained by City of Gloucester to design, permit and oversee construction of FOG improvements at three City-owned pump stations (Finch, Corliss, Thurston)
- EP reviewed three FOG mitigation alternatives for pump stations:
 - Aeration Systems
 - Mixing and Mixing/Aeration
 - Biological Systems
 - Mechanical Systems
 - Grinder Pumps
 - Mix Flush Valves

FOG MITIGATION TECHNOLOGIES SUMMARY TABLE

Category	Improvements	Advantages	Disadvantages
Aeration	Pulsair Mixer (Aeration)	Control of mixing speed and frequencyMinimal maintenance	Highest capital costExternal enclosureSound mitigation
	Titus Twister (Aeration)	 Combination of mixing and aeration Promotes aerobic conditions for treatment 	 External enclosure More maintenance within wet well Space requirements / controls in wet well
Biological	MicroBlock (Biological)	Lowest costNo external enclosure needed	Potentially limited efficacy
Mechanical	Anue Grinder Pump (Mechanical)	High level of mixingCheaper than aeration	 External panel More maintenance within wet well Space requirements / controls in wet well
	Mix Flush Valves (Mechanical)	 Low cost Can include on new pumps or retrofit existing pumps (Finch PS only) No external enclosure or wiring needed 	 Only Finch PS can be retrofitted with mix flush valves No biological or aerobic treatment Limited benefit due to infrequent pump starts

PROPOSED SELECTION: TITUS TWISTER

- Titus Twister selected based on ability to mechanically combat FOG (no chemicals needed)
- Combination of mixing and aeration to promote aerobic conditions for treatment
- No impacts to pump operations or wet well size
- Pilot testing performed at Finch Lane PS in October 2019 to verify performance prior to full-scale install

OCTOBER 2019 PILOT TESTING

OCTOBER 2019 PILOT TESTING

FINAL DESIGN & PERMITTING CONSIDERATIONS

- EP used Titus Twister as Basis of Design for proposed FOG improvements at Finch, Corliss, and Thurston pump stations
- Project also included new mechanical, structural, electrical and instrumentation upgrades to each station
 - Replacement of aging equipment (>30 yr old)
 - Standardization of I&C controls
 - Work within existing site constraints (tight footprint)
 - Adjacent to nearby residential areas (odor concerns)
- Permitting for Project:
 - RDA City of Gloucester Wetland Protection Regulations
 - CWSRF Construction Stage Loan Application

CONSTRUCTION & STARTUP SCHEDULE

- Project issued for bid in March 2020
- Awarded to N. Granese & Sons in April 2020
- Construction began in June 2020
- FOG Equipment started up in March 2021
- Substantially Completed in March 2021
- Final Completion projected to be completed by June 2021

FOG SYSTEM START-UP

FOG SYSTEM START-UP

CONCLUSION & FINDINGS

- Treatment is only part of the solution; goal to eliminate FOG at the source
- FOG equipment mechanically breaks up and aerates FOG within wet well before being pumped downstream toward WPCF
- Reduced maintenance needed at pump stations, but not 100% eliminated
- Does not eliminate inorganic materials (i.e., rags, wipes) that are typically more buoyant than FOG

ACKNOWLEDGEMENTS

- City of Gloucester
 - Ryan Marques, City Engineer
 - Drew White, Assistant City Engineer
 - Dana Martin, Environmental Engineer
- Veolia North America
 - Patrick Cusick, Pump Station Project Manager
- N. Granese & Sons
 - Steven Granese, President
 - Bryan Granese, Project Manager
- MassDEP
 - Kelly Taylor, SRF Project Engineer

Q&A

THANK YOU

Andrew Grota, PE SENIOR PROJECT ENGINEER atg@envpartners.com

Eric Kelley, PE PRINCIPAL eak@envpartners.com

