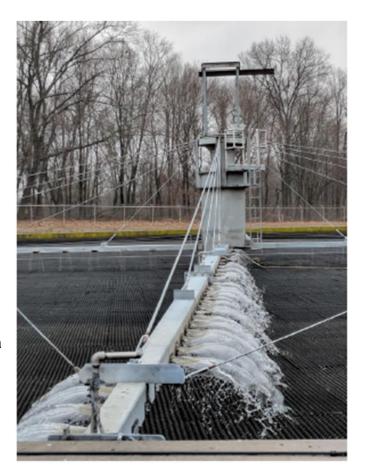


Background

- The Metropolitan District ("MDC")
 - Non-profit municipal corporation established in 1929
 - Provides water and wastewater services to eight communities in greater Hartford, CT region, with partial water service to four others.
 - Owns and operates four water pollution control facilities ("WPCFs")
 - Hartford WPCF
 - o East Hartford WPCF
 - o Rocky Hill WPCF
 - Poquonock WPCF (PWPCF)

Background

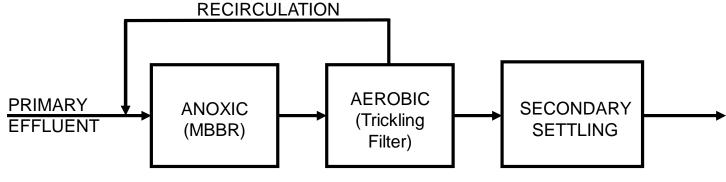

- Poquonock WPCF, Windsor, CT
 - Originally constructed 1962, upgrades in 1979 and 1990
 - Rated for 5 mgd, but averages 2 to 2.5 mgd
 - Process configuration
 - o Headworks w/grit screening
 - o Primary sedimentation
 - o Trickling filters
 - o Secondary sedimentation
 - o Disinfection w/sodium hypochlorite
 - o TF slough to primaries, then to digestion
 - No provisions for total nitrogen (TN) treatment
 - o Subject to CT General Permit for Nitrogen
 - Assigns goals for annual mass loading limit w/equivalency factor
 - Plants that discharge less load sell credits; plants that discharge more buy them.
 - o Goal for TN discharge is 98 lbs/d (4.7 mg/l TN @ 2.5 mgd)
 - Actual discharges higher....requires buying credits

Project Development

- Concept Design and Facility Plan (2014 AECOM)
 - Evaluated a variety of options for PWPCF liquid train
 - o Abandonment of PWPCF, bring flow to Hartford
 - Upgrade of Trickling Filters for BOD only treatment
 - o Upgrade of plant to Activated Sludge for TN treatment
 - Upgrade of Trickling Filters, additional fixed film (MBBR) process for partial TN treatment
- Trickling Filter Upgrades Report (2018 AECOM)
 - Extend useful life of existing plant
 - o Address deficiencies
 - o Review MBBR option for partial TN treatment.
 - What could be accomplished with simplicity and cost containment being design objectives?
 - o Report Conclusions
 - Upgrade of North and South Trickling Filters with new cross-flow plastic media
 - Addition of new pre-anoxic MBBR for partial TN treatment
 - Piloting recommended
 - Add fine screen and washer/compactor
 - Address hydraulic deficiencies

Background – Overview of MBBR Technology

- Moving Bed Bio-Reactor ("MBBR")
 - Developed in Scandinavia.
 - Designed to provide cold weather robustness without diffusion limitations of other fixed film processes.
 - Media typically comprised of small polyethylene carriers.
 - o Media typically 10 to 25 mm in diameter
 - o Biofilm attaches to media.
 - o Media is suspended and mixed throughout water column.
 - Provide surface renewal at interface between film and bulk water column.
 - Reduced substrate diffusion limitations.
 - Can be employed in aerobic or anoxic applications.
 - When employed with return activated sludge, considered IFAS (Integrated Fixed-film Activated Sludge).

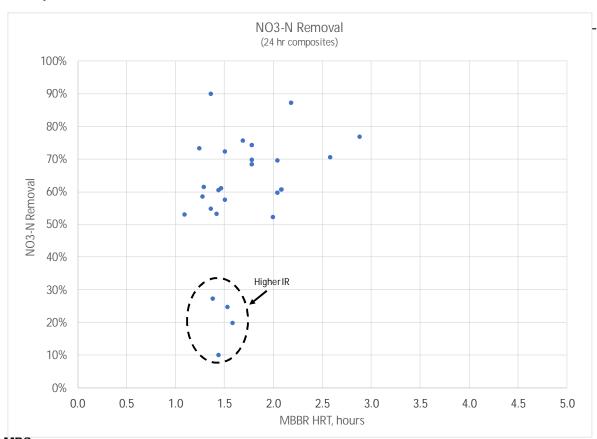


Typical MBBR Media

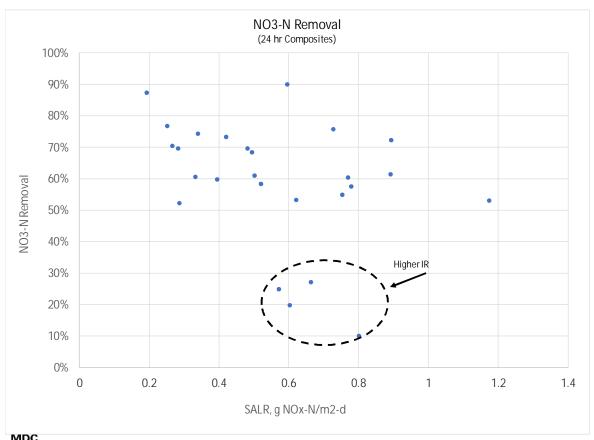
Background – Application at PWPCF

- To maintain adequate flow to trickling filters, plant typically recycles trickling filter flow back to primary effluent wet well.
 - Current recycle flow is approximately 0.6 mgd, but can be set higher
 - Recycle flow rich in NO₃-N.
 - If mixed with a carbon source in right environment, there's an opportunity to denitrify.
- A pre-anoxic process upstream of trickling filters could mimic widely applied MLE process.
 - Keep it fixed film, to minimize solids loading on tricking filters
- Since nitrogen removal is a goal and not a permit requirement, determine optimum size of TN process to get the most nitrogen removal for money spent.

Development of Pilot


- Why Pilot?
 - MBBR is a well-established technology, however not as widely applied in North America
 - Poquonock WPCF is a somewhat unique application
 - o Upstream of Trickling Filters (TF)
 - o Inherent issues with elevated DO in recycle
 - o Confirm typically applied design parameters
 - Surface area loading rate/HRT
 - o Desire to assess impact of recycle ratio
 - o Define full scale implication of process
- Pilot Unit Selected
 - 600-gallon nominal volume
 - Operating Depth of 4 feet
 - Media fill of 40%
 - Nominal feed rate of 8 gpm
 - Feed from primary effluent wetwell
 - o Contains both primary effluent (carbon source) and recycle from TF (nitrate rich).
 - Target recycle changed from TF feed of 2.5 mgd to nominally 3.25 mgd
- Pilot Run from mid-August to late-November 2019

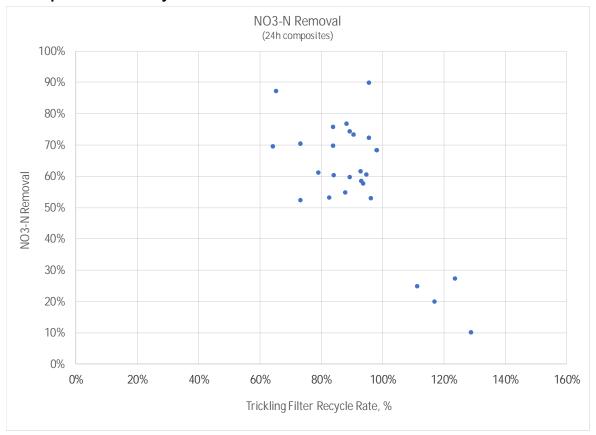
Impact of HRT/Feed Flow



Observations

- Difficulties in control resulted in many different variables changing at once.
 - o Feed pump flow
 - o Influent flow
 - o Recycle NO₃ concentration
- Excepting period of high IR, no real impact of HRT on NO₃ removal rates over range studied.
- NO₃ removals averaged approximately 65%.
 - Note this is % removal across MBBR, not total.

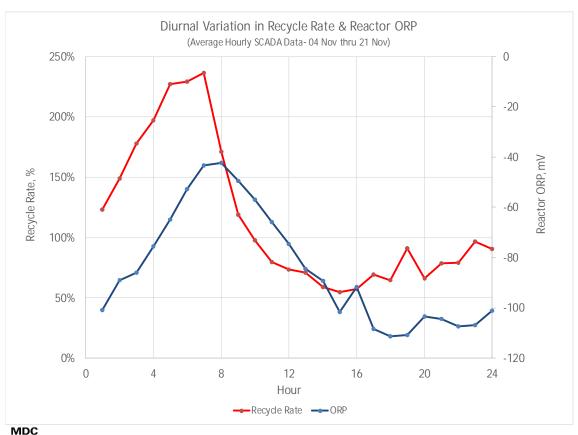
Impact of Surface Area Loading Rate ("SALR")



Observations

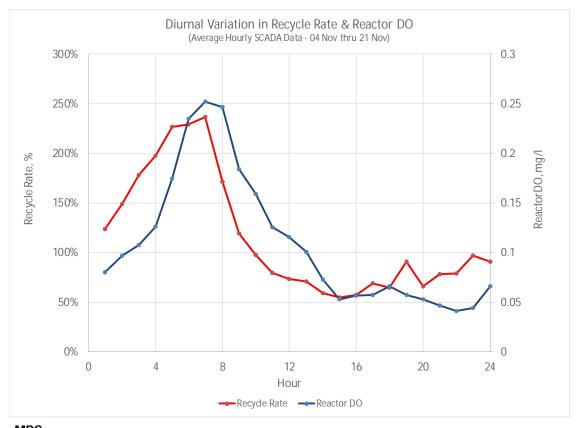
- Similarly, no real affect from SALR changes.
- Typical design range 0.8 to 1.0 g NOx-N/m2-d

Impact of Recycle Rate

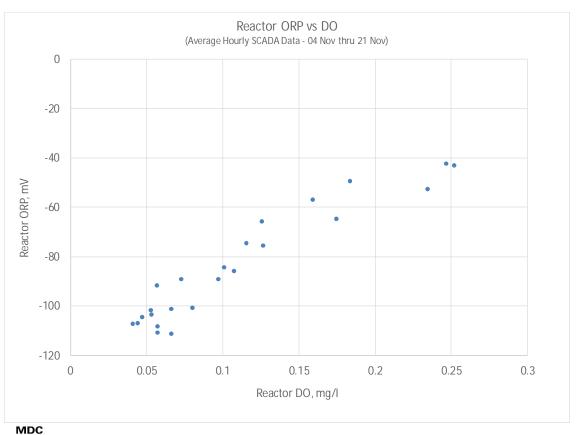


Observations

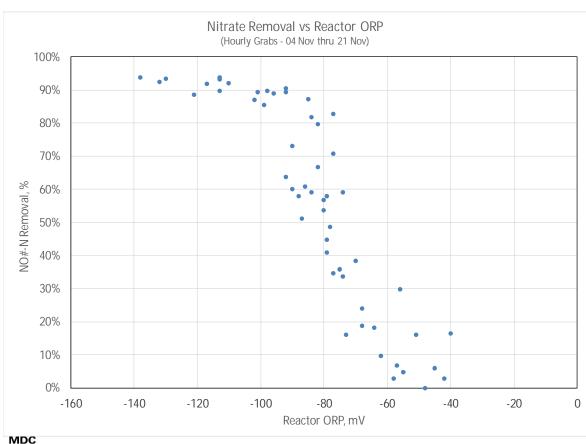
- Recycle rate, which impacts surface area loading rate, not a real issue until over 100%.
- Sharp drop off above 100%.
- Possible explanations
 - Threshold of available primary effluent carbon being exceeded
 - o Environmental conditions with reactor
 - DO/ORP


Diurnal Variation in Recycle Rate & Reactor ORP

- Spot observations of hourly SCADA data suggested diurnal ORP variation
 - Graph of averages shows strong correlation between recycle rate and ORP
 - Increasing recycle rate from midnight to daylight hours due to low influent flow
 - o Constant TF feed
 - Lower primary effluent (PEFF) flow compensated for by higher TF recycle
 - Some lag in ORP response, reactor HRT


– Diurnal Variation in Recycle Rate & Reactor DO

 DO trends harder to spot "by eye" but graph of averages shows similar pattern


Direct Comparison of DO and ORP

- Direct comparison of DO and ORP illustrates strong correlation
- Elevated DO = Elevated ORP
- To be expected, but ORP changes much easier to observe

Nitrate Removal and ORP

 Strong correlation between ORP and NO₃-N removal

- Conclusions

- Degradation of NO₃-N removal is caused by ORP elevation
- ORP elevation caused by excessive reactor DO
- Excessive reactor DO caused by high recycle rates
- Nothing we didn't know, but...
 - o Impact much sharper than anticipated
 - Has implications for suspended growth as well as fixed film processes

Summary of Pilot Conditions & Results

Daily average conditions and results

Parameter	Daily Averages	Comments
Reactor HRT, hrs	1 to 3	No real impact on NO3 removal observed.
Media SALR, g NOx/m2-d	0.2 to 0.9	Marginal improvement at lower SALRs, but not enough to justify large impact on capital cost.
Recycle Rate, %	65 to 130	Sharp drop off in removal over 100 % recycle
Average MBBR NO3-N Removal, %	65	Data at elevated recycle rates excluded.

Preliminary MBBR Design Criteria & Sizing

Design Criteria

Annual Average Influent Flow:
Trickling Filter Recycle Rate:
Peak MBBR Flow:
Combined Primary Effluent/Recycle NOx-N:
2.3 mgd
100%
7.5 mgd
6.4 mg/l

Minimum Month Operating Temperature: 10 degrees C

Design Surface Area Loading Rate: 0.8 g NOx-N/m2-d

Design HRT at Average Flow:
 1.5 hours

Design Summary

• Quantity of Tanks: 2

• Tank Dimensions

Length
 Width
 SWD
 30 ft
 21 ft

Tank Volume

Each
 Total
 Media Fill
 142,000 gals
 284,000 gals
 26%

Ancillary MBBR Equipment

□ Twenty (10/tank) media sieves

Two (1/tank) drain sieves

Two (1/tank) sparge manifolds

Two (1 duty/1 assist) 5HP

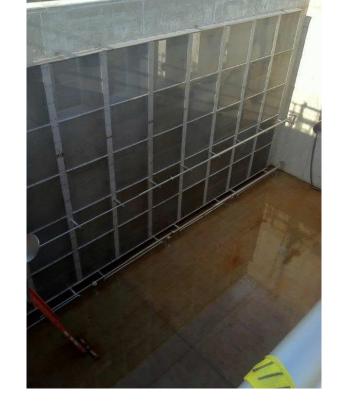
blowers

- Two (1/tank) 20 HP mixers

DO/ORP Probes

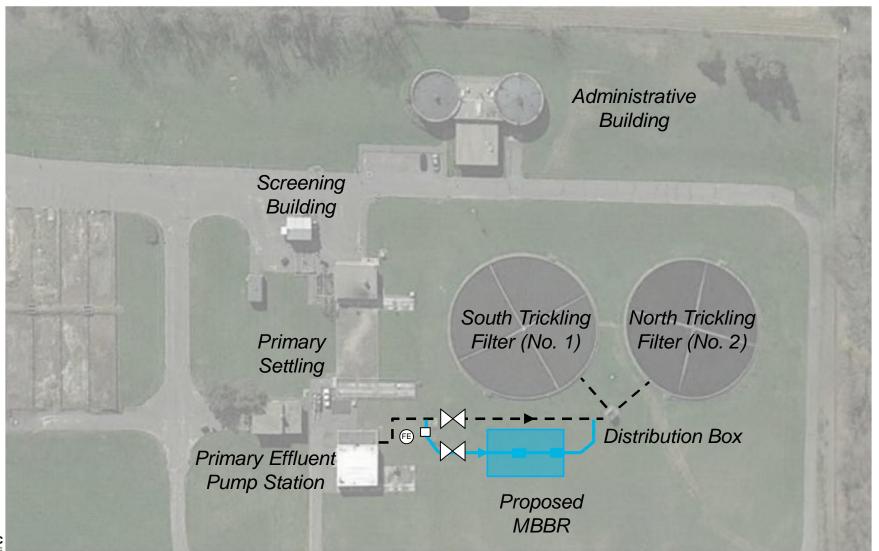
Level instrumentation

Control panels


280 m3 of MBBR media

MBBR Process Control Considerations - Full Scale

- Improve nitrification rate in trickling filters
 - TF media replacement in both tanks with higher density media
 - Reduced carbon loading to trickling filters
 - Improved capacity with hydraulic improvements
- Flow Control/Bypass Provisions
- Overflow Protection/Media Retention
 - Overflow provisions and ability to return to Primary Effluent wet well
 - Level instrumentation and alarm (2 levels)
 - Redirect flow to TF only upon HWL
- Look for opportunities to reduce DO carry-over to MBBR
- Improve recycle control
 - Implement ORP control on recycle



Other Project Needs

- Fine Screening
 - Provide 6 mm screens and washer/compactors to replace current screen
- Trickling Filters
 - Replace media in both trickling filters
 - Correct hydraulic problems in the south Trickling Filter by increasing influent pipe size to 20-inch diameter
 - Replace south Trickling Filter rotary distributor
- Convert solids handling from anaerobic digestion to storage and removal
- Electrical improvements

AECOM Imagine it. Delivered.

