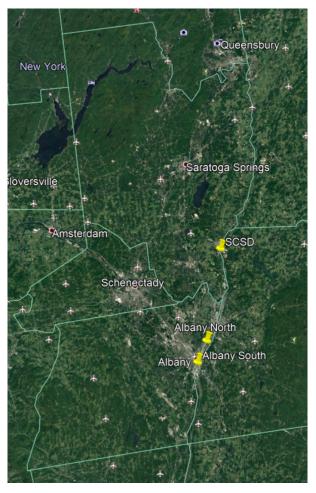
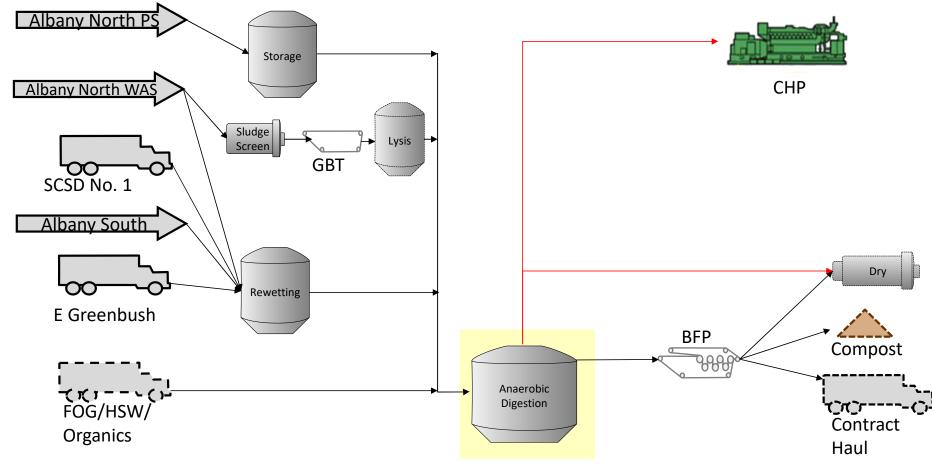
Birth of a New Regional Biosolids Handling Facility

Speaker: Eric Staunton, PE, PhD Angelo Gaudio, ACWPD Dan Rourke, SCSD Robert Ostapczuk, PE ARCADIS

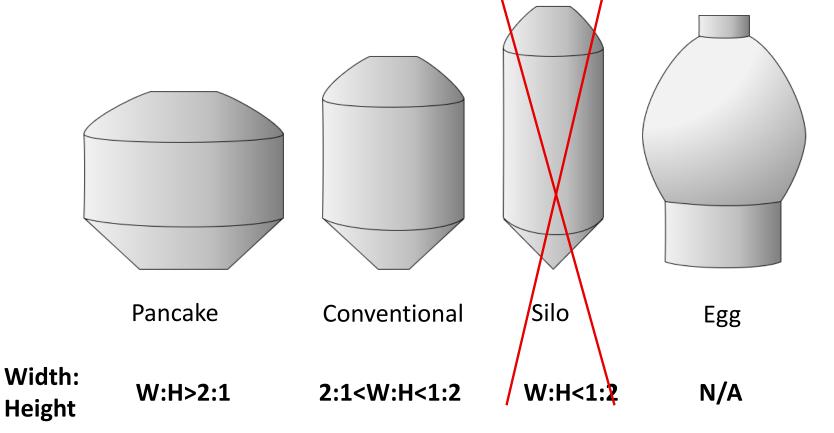
February 4²⁰²¹


Background

- ~2016 Albany County completed a feasibility study to replace aging multiple hearth incinerators with new anaerobic digesters
- Concurrently, Saratoga County Sewer District had shut down an existing fluidized bed incinerator and was exploring alternative methods of sludge minimization
- In ~2018 Albany and Saratoga County entered an intermunicipal agreement to build, own, and operate a Regional Biosolids Facility located at ACWPD's North Plant.
- Anaerobic digestion will serve the heart of the new facility to promote resource recovery


Geography

New Process


Alternatives Development

Digester Volume and Configuration

- 3.5 million gallons of digester volume
 - 15-day SRT at maximum month
 - 22-day SRT at average loading
- Two configurations were evaluated
 - Two tank configuration (1.75 MG each)
 - Three tank configuration (1.15 MG each)

Digester Geometry

Alternatives

- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4
- Alternative 5
- Alternative 6

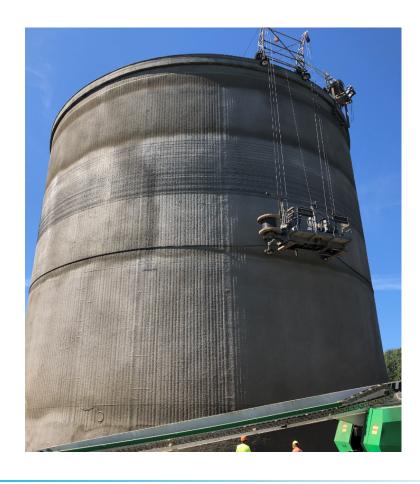
- 3 Conventional Digesters
- 3 Pancake Digesters
- 2 Conventional Digesters
- 2 Pancake Digesters
- 2 Egg-shaped Digesters
- 3 Egg-shaped Digesters

Materials of Construction

Construction Materials and Methods

- Cast-in-place (CIP) concrete
- AWWA D110 wire-wrapped pre-stressed concrete
- AWWA D115 internal tendon pre-stressed concrete
- Bolted glass-fused-to-steel
- Bolted epoxy coated steel
- Double fold stainless steel
- Welded steel (egg only)

Traditional Cast-in-Place Concrete

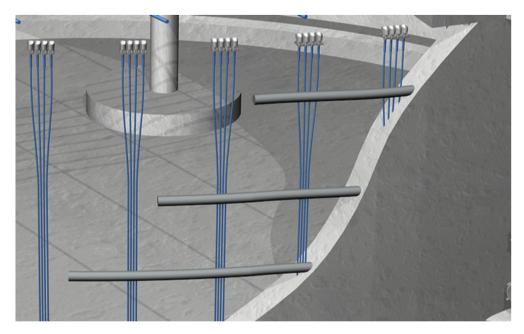

Traditional Cast-in-Place Concrete

- Pros
 - Established technology
 - General contractor can selfperform
 - Easy to modify
 - Flexibility to coordinate piping system

- Cons
 - Thick walls with high soil loading
 - Expensive
 - Prone to cracking
 - Required interior coatings especially for gas zone
 - Long construction time especially in cold weather

Wire-Wrapped Pre-Stressed Concrete (D110)

Wire-Wrapped Pre-Stressed Concrete (D110)


- Pros
 - Thinnest walls
 - Flexible floor/wall connection
 - Pre-cast onsite
 - Significant experience with large pancake style water tanks.

Cons

- Required interior coatings especially for gas zone
- Cannot pre-stress roof or slab
- Expensive side-wall penetrations, and limited ability to add penetrations after erection.
- Vendors geographically limited
- Two potential bidders neither will cast-in-place
- Limited experience with tall tanks
- Race-track required around tank
- Large lay-down area required

Internal Tendon Pre-Stressed Concrete (D115)

Internal Tendon Pre-Stressed Concrete (D115)

Pros

- Least lay-down area and site constraints
- Thinner walls than conventional cast-in-place
- Pre-stressed roof and floor slab
- Easier wall penetration
- Fast erection time
- Experience with large digesters

Cons

- Required interior coatings especially for gas zone
- Thicker walls than D110
- Potential for air-gaps in conduit (corrosion and tank weakening)
- Three known potential vendors
- Limited tank height

Bolted Glass-Fused-to-Steel

Bolted Glass-Fused-to-Steel

Pros

- Chemically inert glass coating
- Recoating not required
- Light weight

Note

Common in agricultural market

Cons

- Potentially sole source (three known vendors, one AIS compliant)
- May require replacement of sacrificial anode
- Relatively little experience with municipal anaerobic digesters
- Must be entirely above grade

Bolted Epoxy Coated Steel

Bolted Epoxy Coated Steel

- Pros
 - Lowest Cost Option
 - Light Weight
- Note
 - Common in agricultural market
 - Common in vendor upgrade packages (Suez 2PAD, Evoqua BVF, etc)

Cons

- Requires periodic inspection and recoating
- Requires regular replacement of sacrificial anode
- Relatively little experience with municipal anaerobic digesters
- Must be entirely above grade

Double Fold Stainless Steel (LIPP Tanks)

Double Fold Stainless Steel

Pros

- Stainless steel lining material
- Light weight
- Little time required onsite (approximately 10 days)

Cons

- Sole source
- May not be AIS compliant
- Limited experience with anaerobic digestion in the US (Medina, OH)
- Only installed if ambient temperature is >35°F
- Requires regular replacement of sacrificial anode
- No bid for "conventional" geometry
- Must be entirely above grade

Welded Steel Egg-Shaped

Welded Steel Egg

Pros

- Self-scouring design
- Can have high gas pressure design
- Smallest water surface (simple foam management)
- Several high-profile US project
- Performance guarantee

Cons

- Sole source
- No freeboard
- Very tall structures
- Steel must be entirely above grade
- Highest cost

Ancillary Systems

Ancillary Systems

- Covers
 - Floating Steel
 - Fixed Steel
 - Dual Membrane

- Biogas Storage
 - Dual membrane
 - Steel Sphere

- Mixing System
 - Pump and Nozzle
 - Linear Motion
 - Side entry
 - Draft tube

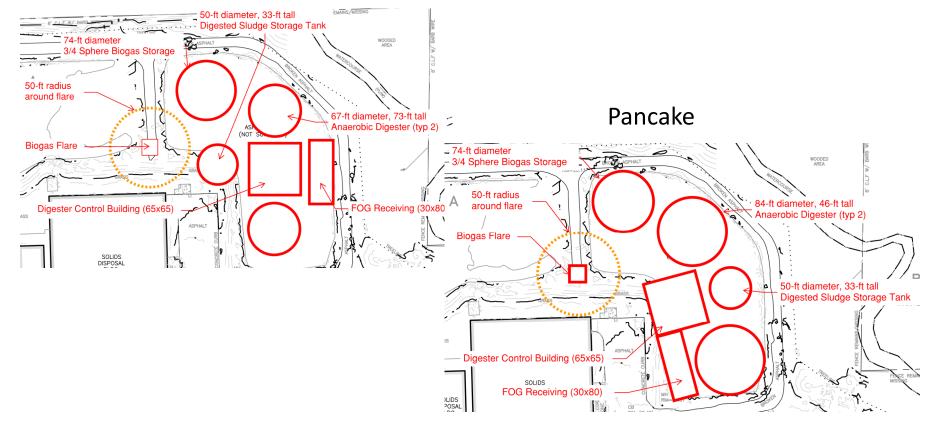
Economics

Tank Costs – in millions

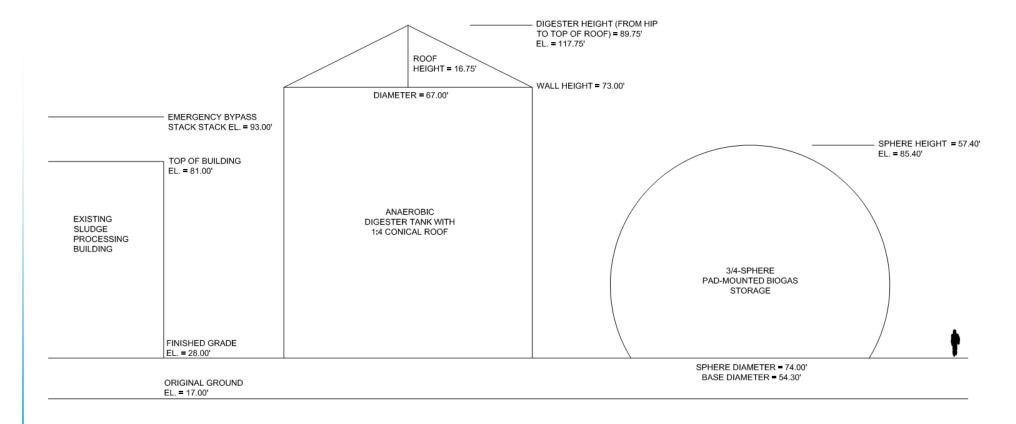
	2 tanks "Conventional"	2 tanks "Pancake"	3 tanks "Conventional"	3 tanks "Pancake"
Cast-in-place	\$9.7	\$8.3	\$10	\$8.7
D110	\$5.4	\$5.1	\$6.3	\$5.7
Pre-cast D115	N/A	\$4.0	N/A	\$4.8
Cast-in-place D115	\$6.4	\$5.8	\$7.2	\$6.8
Bolted Glass-fused- to-steel	\$5.5	\$5.3	\$7.2	\$6.8
Bolted Epoxy Coated	\$3.3	\$3.4	\$3.8	\$3.8
Double fold SS	N/A	\$7.7	N/A	\$7.7
Steel Egg	\$18.3		\$20.4	

Tank Costs and Recommendation

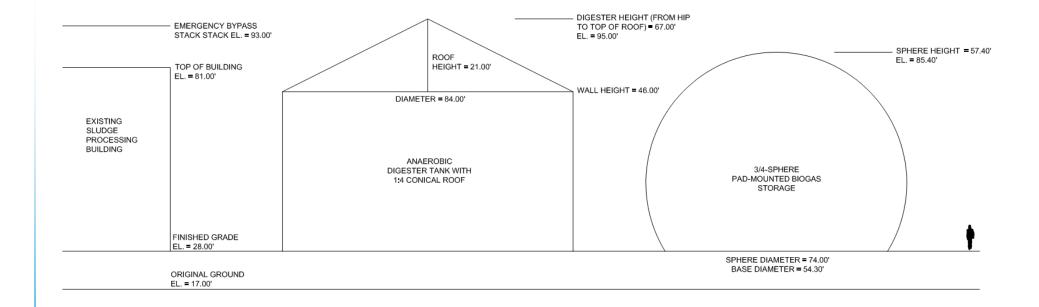
- Worked with owners to develop recommendations
- Two anaerobic digesters
 - "Conventional" geometry
 - Bolted epoxy coated steel
 - A vendor provided self-supported steel roof
- Mixing by chopper pump and nozzle
- Biogas storage in pad mounted ¾ sphere dual-membrane



Non-Cost Factors


Non-cost Factor: Site Plan

Conventional



Non-cost Factor: Tank Height – 2 tank conventional with ¾ sphere gas storage

Non-cost Factor: Tank Height – 2 tank pancake with ¾ sphere gas storage

Thanks!

Colleagues and Coworkers

Albany County Water Purification District

Saratoga County Sewer District

ARCADIS

Contact us!

Eric Staunton, PE, PhD
603-222-8331
stauntonet@cdmsmith.com

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

