

Industrial and Aviation Contamination – Looking Upstream to Prevent PFAS from Contaminating Municipal Wastewater

Patrick McKeown, PE – Business Development Manager, ECT2

Patrick McKeown, PE

Business Development Manager, ECT2

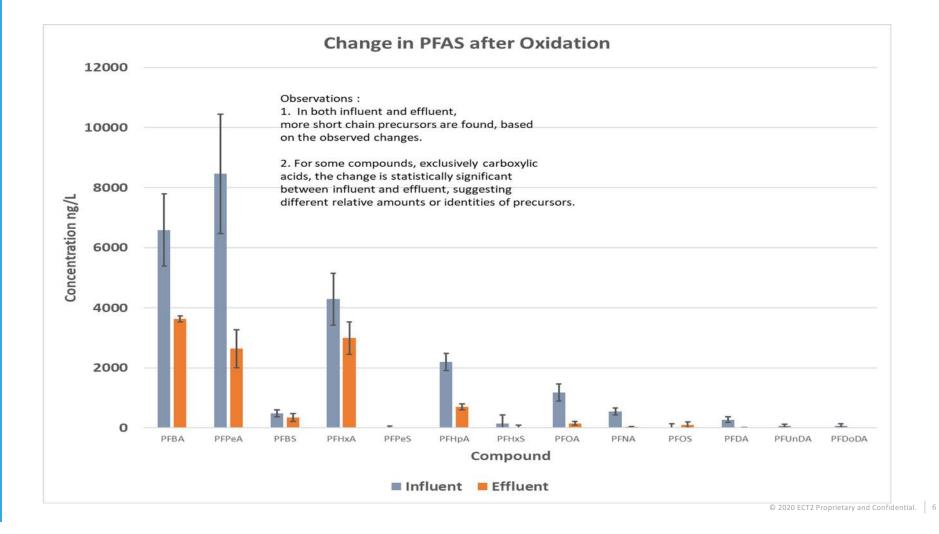
Presentation Outline

- Tracking PFAS as it moves through wastewater
- Focused Discussion on Removing PFAS from Challenging water
- Industrial wastewater
 - Opportunity, challenge, solution
- Deicing Fluid
 - Opportunity, challenge, solution
- Conclusion

PFAS In Municipal Wastewater

A case study in North Carolina

Background Conditions


• Study

- Collected Influent and Effluent samples in which we wanted to compare the magnitude of PFAS precursors
- Samples were collected from the same WWTP at the same time points.
- A 24 hr lag time was given for effluent collection as to be more representative of the corresponding influent sampled

Degradation Products

Common in Waste Water & Chemically Rich Environments

6:2 FTS (C8)

Liver and Kidney Toxicity Skin Irritation

Compounds	Influent	Effluent	Δ
6:2 FTS	1840 ppt	105 ppt	- 1735
PFHxA	19.9 ppt	70.8 ppt	+ 50.9

Mass Balance....Where did it go?

https://nasf.org/wp-content/uploads/2019/04/Summary-of-Toxicology-Studies-on-6-2-FTS-and-Detailed-Technical-Support-Documents.pdf

What does this mean?

- What does this mean for the industry?
 - PFAS bio-transforms as it moves through conventional POTW treatment
 - Removing PFAS from effluent discharge will be expensive
 - Research should be done about removing PFAS sources upstream

AIRPORT PFAS TREATMENT

Opportunity

Opportunity

- 1+ million gallons of deicing fluid generated every winter season
- Legacy PFAS impact on the soil and groundwater in the area
- Deicing fluid picks up PFAS as it moves through the stormwater collection system
- 500,000 gallons of capacity in storage lagoons prior to discharge to sanitary sewer
- Lagoons storage allows for sampling/analytical to control discharge rate to POTW

Challenge

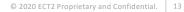
Challenge

- De-icing fluid is a difficult matrix to remove PFAS from – fatty acids, high glycol and COD
- Lagoons had plenty of iron, bacteria, and biofouling agents present
- Storm precipitation varied, leading to fluctuating dilution/background chemistry
- Freezing temperatures Difficult to pump ice!
- Nearby PFAS mitigation systems unaffiliated with this property
- Remote location electricity and potable water not easily accessible on site

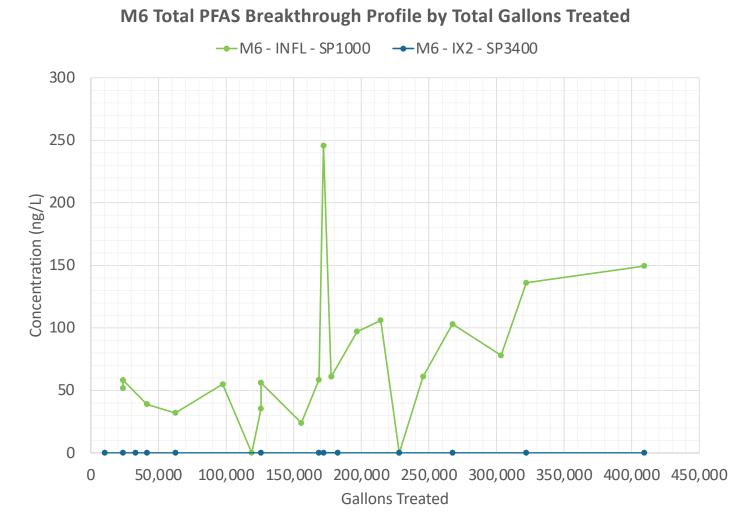
Solution

• Solution

- SORBIX M6 25 GPM Mobile Treatment Unit
- Rapid Construction and Deployment PO to treated water on site in 30 days
- Pilot system running ahead of the full scale system – help forecast any biological or pressure challenges
- Innovative treatment approach to prevent variables from impacting performance
- 24/7 remote access to operations ensuring success on site



Onsite Pilot


- Challenges + Process Forecasting
 - Pilot system running ahead of the full scale system – help forecast any biological or chemical challenges
 - Pressure Build
 - Organic Dispersant developed that was both safe for IX resin and the wastewater treatment plant
 - Rapid turnaround on PFAS Samples from lab partner to allow for on-the-fly changes
 - Major impact from Iron in water

Data + Lessons Learned

- Data + Results
 - 23 compounds analyzed

 non of which were
 detected above 2 ppt in
 treated water
 - Pretreatment step performed well – no issues with biological interference
 - Minimal waste produced due to innovative treatment approach

• Lessons from the field

- Pretreatment extremely
 important
 - Biogrowth is a challenge learnings from the pilot study and previous experience to protect the system
 - Variability in water chemistry can lead to challenges – utilize upfront storage (lagoons)

SORBIX[™] PURE Full Scale System – Challenging Water

Airport Deicing Fluid

PFAS Source:	Legacy AFFF Impact		
Source Water:	Deicing Fluid Lagoons, Surface Water		
System Flow Rate:	12 GPM Average Flow	Capable of 24/7 unmanned operation	
Maximum Influent PFAS Level:	PFHpA = 36 PPT PFHxS = 13 PPT PFOA = 47 PPT		PFHxA = 57 PPT PFOS = 55 PPT
Target Effluent:	Non-detect for all PFAS Compounds		

Industrial Process Water PFAS Treatment

PFAS is used in the manufacturing process, how do we keep it out of the wastewater?

Opportunity

• Opportunity

- PFAS used to manufacture a product
- Total PFAS concentrations in the wastewater present at 500 ppb to 1 ppm
- Daily flow varied between 30,000 gallons and 288,000 gallons of wastewater, depending on the process taking place that day

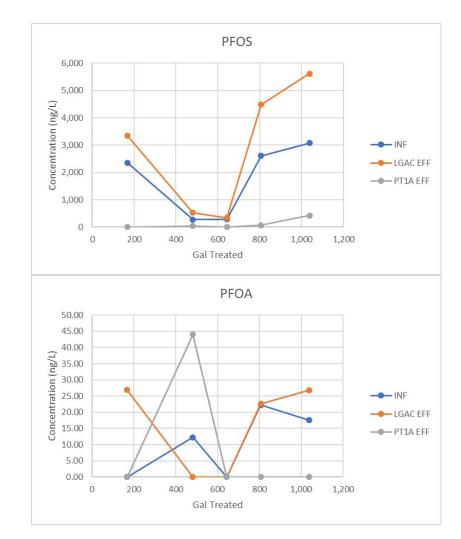
Challenge

Challenge

- Extremely challenging water matrix for PFAS removal
- Batch production resulted in variable water chemistry
 - High variability in solids generation lead to increased need for pretreatment
 - Up to 20,000 mg/l in TDS
 - Up to 8,000 mg/l in TOC

Solution

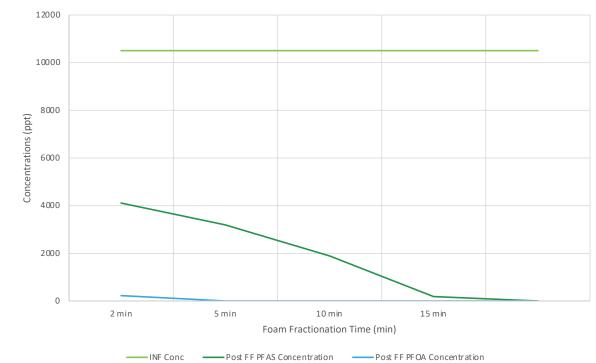
- Pilot Setup
 - GAC
 - Single Use Resin
 - Pretreatment followed by IX
 - Foam Fractionation



Phase I Pilot Results

Results

- No clear winner
- High variability in the water lead to interesting performance data
- Immediate issues with pressure creep and TDS forced us to make a change



Phase II Pilot Study

• Foam Fractionation

- Foam Fractionation
- Works by using bubbles to "attract" PFAS molecules and float them out of solution
 - Tested with dwell times of 5, 10, 15 minutes
- Initial influent above 9 ppb, after FF final PFAS < 80 ppt

PFAS Concentrations vs Foam Fractionation Time

Results

- Solution
 - For this industrial case
 - Foam Fractionation pilot phase beginning in the next couple weeks
 - Initial fractionation will get enough PFAS removal for facility to meet permit
 - GAC or IX will be utilized to then treat foammate before discharge
 - Eventual goal is to couple with destruction technology

Data + Lessons Learned

• Data + Results

- PFAS treatment at the source can be more effective, and less expensive, than treating PFAS in municipal wastewater
- More data is needed to continue understanding of PFAS impact on POTW
 - "Background level" data needs to be agreed upon by the industry
- Not every industrial source is the same tailored solutions will be required
- Some

Thank you!

Patrick McKeown, PE – Business Development Manager, ECT2 pmckeown@ect2.com – 207-318-7817 -