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Motivation:  
Anomalies Happen
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https://www.justice.gov/opa/pr/owner-oil-chem-inc-pleads-guilty-violating-clean-water-act https://www.mlive.com/news/flint/2021/01/oil-chem-owner-accused-of-dumping-nearly-50-

million-gallons-of-landfill-liquid-into-flint-sewers.html
https://www.wateronline.com/doc/companies-punished-for-illegal-
discharge-into-public-sewers-0001



Project Vision & 
Challenges
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Research Objectives & Process

First steps:

• Collection/analyze long-
term dataset

• Determine simplest way to 
model (range of) “normal” 
for wastewaterAnomaly detection 

in WW (all signals)

“Simplify” sensor

Anomaly 
Characterization

Wastewater 
Characterization

Statistics/ Machine 
Learning
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UV-Vis Spectrometry:  
Wide Detection Capabilities
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Previous wastewater studies
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Thomas, M.-F. (2017). Chapter 9: Urban Wastewater. UV-Visible Spectrophotometry of Water and Wastewater, 281–315. https://doi.org/10.1016/B978-0-444-63897-7.00009-3

Time of day

• Spectra grouped by hour
• Limited amount of data
• Does not show 

variability



Previous wastewater studies
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Chow, C. W. K., Liu, J., Li, J., Swain, N., Reid, K., & Saint, C. P. (2018). Development of smart data analytics tools 

to support wastewater treatment plant operation. Chemometrics and Intelligent Laboratory Systems, 

177, 140–150. https://doi.org/10.1016/J.CHEMOLAB.2018.03.006

Tsoumanis, C. M., Giokas, D. L., & Vlessidis, A. G. (2010). Monitoring and classification of wastewater quality using supervised pattern recognition techniques and 

deterministic resolution of molecular absorption spectra based on multiwavelength UV spectra deconvolution. Talanta, 82(2), 575–581. 

https://doi.org/10.1016/j.talanta.2010.05.009
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• Serves ~250,000 in the Worcester area (56 mgd)

• Spectrometer installed since July 2019

• Characterizing primary effluent
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Case Study:  Upper Blackstone Clean Water

s::can spectro::lyser



Analysis:  2020 calendar year
• 43,010 samples

• 208 wavelengths 
(220 - 737.5 nm)
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220 nm



Research Questions

1. What new can be learned from high-res / long-term data?

2. Is there a simpler method to define normal, and how might that 
be informative?

3. Can we observe the effects of government policy changes in 
2020?
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Data Preprocessing

• Lens Fouling 

• Observe pre/post cleaning

• Interpolate to quantify drift

• Subtract from raw spectra

• Normalization

• Simple scaling

• Preserves shape

• Reduces dilution effects
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What Can We Learn?
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(median ± 1 σ)

By 3-hr Bins



What Can We Learn?
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By Month

By Day of the Week



What Can We Learn?
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By Rainfall

By Percentile Flow



Can we simplify definition of “normal”?

• Objective:  Group spectra 
based on shape similarity 

• Method:  Fuzzy C-means 
Clustering
• Unsupervised classification

• Iterative, distance-based

• No a priori constraints on 
clustering
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https://machinelearningjourney.com/index.php/2020/02/07/k-means-k-medians/



Clustering Results
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Cluster 3
27%

Cluster 1
31% Cluster 2

31%

Cluster 4
11 %

(median ± 1 σ)



How do these compare with physics-based?

17

C-Means Clusters



What do these clusters show?
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Case Study - Pandemic Restrictions
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Median 
Flow 
(mgd)

%  Wet 
Weather

Average 
220 nm 
Absorption 
(abs/m)

No Restrictions 23.7 6% 77

Pandemic 
Restrictions

33.5 
(+31%) 11% 65 (-15%)

• Start:  March 17, Gov. issues closure 
of schools, additional restrictions

• End:  July 6, Gov. Baker announces 
start of Phase 3 reopening



Day of Week/ Hour (C-Means Clusters)
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Conclusions

Next steps:  working toward anomaly detection
• Algorithm development (“normal” vs. not)

• Validation with field + lab data
21

0%

100%

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Groups by Flow Percentile

Group 1 Group 2 Group 3 Group 4

1. What have we learned? 2. Simply defining “normal” 3. Policy effects
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