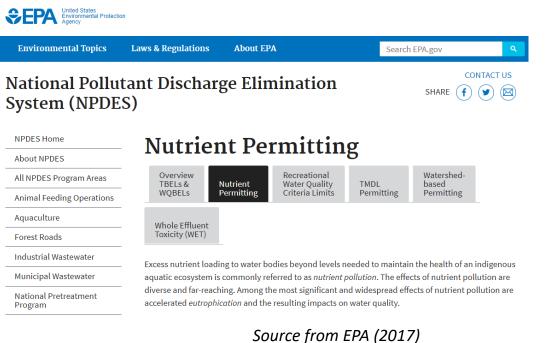


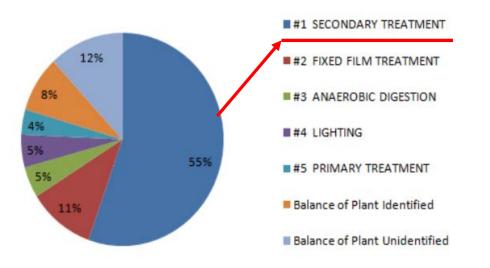
Enabling Next-Generation Process Automation: Where are the Next Innovations in Sensing and Data Analytics?


Wenjin Zhang¹, Nick B. Tooker², and Amy V. Mueller¹

Contact: zhang.wenji@husky.neu.edu

1. Dept. of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA 2. Dept. of Civil and Environmental Engineering, University of Massachusetts Amherst, Boston, MA 01003, USA

Motivations for the field of WWTP


Responding to tightening discharge limits

Motivations for the field of WWTP

Reducing energy costs

Top Electrical Energy Use Systems

Figure from EPA (2012)

Motivations for the field of WWTP

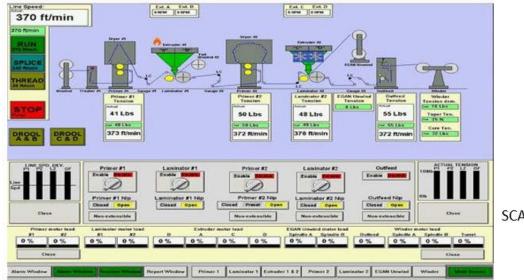
Enabling transformation into *wastewater resource recovery facilities*

(WRRF)

Image from Durham phosphate recovery facility

Goals of our work

- Understand what is possible
- Identify the roadblocks
- Look for promising solutions


Methods

- Literature review: Research and implementation stages
- Workshops (as discussed earlier in this session)

Tools to improve process performance

- Data analytics for real-time data processing
- Online control schemes

SCADA architecture example

Innovation is already well underway

Northeastern

Case study 1: City of Layton WWTP, FL

Upgrade type and year: SBR for nitrification/denitrification

(full-scale), 2009

Sensing strategy: DO, ORP, and TSS sensors

Sensor location: installed in each SBR

Updated control: from a level batch process to a timed batch

TN Permit: 10 mg/L

	Influent Total Nitrogen	Effluent Total Nitrogen			
	Average Concentration	Average Concentratio	n Standard Deviation	Units	
Pre-upgrade	89.3	7.88	4.26	mg/L	
Post-upgrade	64.1	3.33	1.87	mg/L	PHEASTER
(2015) ://www.epa.gov/s	sites/production/files/2015-0	08/documents/508 58	% decrease	11	Northeastern University

Case study 2: Wildcat Hill WWTP, AZ

Upgrade type and year: Process control for activated sludge in

MLE (full-scale), 2013

Sensing strategy: combined ammonia/nitrate probe (ISE type), ORP

Sensor location: installed at the end of the anoxic zone

Updated control: DO control

TN permit: 10 mg/L

Looking forward: data analytics for real-time data processing

- Ingest and respond to data streams from multiple sensors simultaneously
- Ability to learn from collected historical datasets
- Modeling of highly non-linear processes without requirement of modeling process physics or biology

Case study 1: Lab analysis with real plant data

Goal of the study: To improve emissions prediction such as odor nuisance
Instrument: Odalog Logger L2 instrument for H₂S gas
Instrument location: Headworks influent chamber
Model applied: Principle component analysis (PCA) + artificial neural
networks (ANN)

Output	RMSE	R ²
EF-flow [0–500 mg/m 3]	15.26 mg/m ³	0.95

Zounemat-Kermani et al., 2019

Case study 2: Moving towards operational use

Goal of the study: To handle noise and extract useful information
Instrument: UV/Vis spectrometer for COD, TSS, oil & grease, turbidimeter
Instrument location: Effluent of a restaurant on campus

Model applied: Weighted partial least square (nonlinear regression)

Output	RMSE	R ²
COD [0-2500 mg/L]	141 mg/L	0.952
TSS [0-550 mg/L]	30.2 mg/L	0.965
O&G [0-550 mg/L]	34 mg/L	0.945

Qin et al., 2012

Online control algorithms and applications

Algorithms

- **PID** (proportional-integral-derivative) control is commonly applied in the wastewater industry already
- Fuzzy logic control is drawing interest in academia

Applications

- DO control
- ABAC (ammonia-based aeration control)

Case study 1: Ejby Mølle WWTP, Denmark

Motivation: To reduce N₂O emissions and

improve energy efficiency

Control method: From intermittent aeration to continuous aeration

with DO-based control

Process type and scale: Partial nitrification-denitrification, full scale

Application year: 2014

Results:

- 56% increase in N₂O emissions removal efficiency
- 18% energy savings

Case study 2: Hampton Roads Sanitation District WWTP, VA

Motivation: To improve energy efficiency

Control method: From DO-based control to ammonia-Based Aeration

Control (ABAC)

Process type and scale: 5-stage Bardenpho process, full scale

Application year: 2013

Results:

- 53% decreased supplemental carbon for denitrification
- 10% energy savings compared to DO setpoint control

Case studies in research: Fuzzy logic control

Advantages:

- Can implement human experience/intuition/uncertainty into the controller
- May achieve better results than PID control

Disadvantages:

• Hard to turn the parameters

Study with fuzzy logic	Scale	Result
Fiter et al., 2010	Bioreactor that models ASM1	13% decreased energy usage compare to ON/OFF control
Bouzas et al., 2019	20.6 L EBPR lab reactor	29.6% P recovery - compared to 13.7% with PID

University

Challenges in bringing research to practice

- Every plant is unique, no one-size-fits-all algorithm/model
- Lab experiments control variables to assess repeatability, may not represent results under operational conditions
- As model complexity increase, it is difficult to assess the expected response to all possible conditions

Gaps and challenges

Slow transfer of innovation from academic labs to practice

- Cost of sensors, complexity of data algorithms

How to ensure sensor data will be useful in plant operations?

- True impact of upgrading strategies rarely clear from research publications

Knowledge gaps between existing environmental engineering training and these numerical skillsets

Suggestions for Enabling Solutions

Enable operators to evaluate cost/benefit in reference to the status quo

- Reporting results with new sensors and data methods <u>under realistic conditions</u>

Training of environmental engineers and plant operators

- Skills such as statistics, data processing, data visualization, etc.
- Leverage state or federal grants for workforce development

Partnerships between operators and researchers

- Enable development of novel analytical approaches
 - Data sharing
 - Developing new data integration/visualization tools
- Exploring process dynamics, leveraging existing facilities
 - Build more realistic test facilities (e.g., Tucson WEST, HRSD)
 - Generate results that are more useful/interpretable for plants
 - Improve utility and trust of new algorithms
- Build workforce of tomorrow
 - Give students a window into true challenges/context

Acknowledgements

Many thanks to all of our workshop participants!

Bob Amaral (Wood & Curran), Brad Furlon (Hoosac), Carl Williams (Easthampton), Edris Taher (Upper Blackstone), Jim Legg (Uxbridge), Jeff Kalmes (Billerica), Jeff Gamelli (City of Westfield), Jeff Murawski (Fitchburg East), Jim Nyberg (North Brookfield), Liz Tagleiri (Charles River), Mike Williams (Holyoke), Marc Drainville (GHD), Mickey Nowak (MAWEA), Tim Hutchins (HACH), Tim Loftus (Upper Blackstone), Zack Ritzer (Chicopee).

Support and funding from:

Northeastern University

UMassAmherst

Current innovations in real-time sensing applied in WWTPs
 Data analytics and online control for treatment processes
 Gaps and solutions –

COLLABORATION!

Contact:

Wenjin Zhang: zhang.wenji@husky.neu.edu

