

Application of Smart Data Infrastructure for Integrated Wet Weather Management NEWEA 2020 Session 7

Tony Omobono, PE. Tony.Omobono@tetratech.com Diana Tao, Qing. M.Eng., Dianaqing.Tao@tetratech.com

> complex world CLEAR SOLUTIONS

Agenda

- Drivers for Smart Data Infrastructure
- Roadmap for Phased Implementation
- Case Studies
- Benefits for Smart Data Infrastructure
- Lessons Learned

Utilities are faced with complex and varied wet weather issues and associated infrastructure impacts

TETRA TECH

ŦŁ

Deferred maintenance/replacement of aging infrastructure is driving increases in O&M cost

100% \$160 90% \$140 **Total Spending** 80% (2.8% CAGR) O & M Costs \$120 08M Spending \$B (in 2014 equivalents) 70% \$100 **O&M** Costs 60% (4.7% \$80 50% 40% \$60 Cap Ex Spending 30% \$40 Capita 20% **Capital Investments** Investme \$20

(1.5%

1955 1965 1975 1985 1995 2005 2015

Historical Trends - Investments in U.S. Water & Wastewater Infrastructure

\$0

1955 1965 1975 1985 1995 2005 2015

10%

0%

TETRA TECH

Workforce challenges require innovative solutions

The public expectation of high service and low rates drives the need for increased efficiency

"Smart" systems are increasingly becoming a part of sustainable utility operations

Innovation helps to expand the capabilities and adoption of smart systems

Technology Improvements

- Instrumentation and control
- Data analytics/services
- Forecasting software/services
- Battery technology
- Communication and security
- Innovation trends: Leverage data for "smart" utility

What do we mean by Smart Data Infrastructure?

- Integrated data, analytics, hardware, and software solutions to improve the efficiency, reliability, and lifespan of the physical layer of assets through better data utilization.
- Scalable right data at right time to fit utility goals and objectives

Implementing Smart Infrastructure

ennegeneratorne

Roadmap for smart infrastructure implementation

- Develop a Vision
- Technology evaluation: initial investment and annual cost + Staffing
- Detailed planning: funding and implementation plan
- Schedule: change management timeframe
- Adaptive management

Step 1: Transforming data into wisdom

- Leverage data to increase O&M wisdom and decision making
- Staged approach to implementing smart utility to limit re-work

Step 2: Monitoring – Real-time information

• Real time monitoring

- Sensor ownership
- Maintenance
- Data collection and management

Monitoring Considerations

- Selection of appropriate technology
- Data verification plan
- Automate data QA
- Maintenance tracking

Step 3: Actionable insights

- Level 1: Alarm management and prioritization
- Level 2: Operational Situational Awareness
- Level 3: Automated diagnostic and predictive data analytics

Case Study – San Antonio Water

- Decreased cleaning frequency by 94% at 10 pilot sites with no increase in spill risk
- Identified potential savings of \$4,000 per location per year

Flow prediction: real time modeling + dashboard

Step 4: Decision support for operational enhancement

- Centralized database management
- Effective data visualization in real time
- Key performance indicators

Case study: Quebec flood mitigation decision support

Benefits and Case Studies for Wet Weather Management

Benefit: Data to support system optimization and enhancements

• Meeting compliance?

- Are capacities utilized when overflowing?
- Conveyance, storage and treatment

EPA figure

System Capacity Usage During Overflows

Benefits: System Optimization

- Maximize return on investment: existing and planned facilities
- Takes advantage of unused capacity during wet weather through real time control

"A system that dynamically **adjusts** the operation of a facilities in response to online measurements in the field to maintain and meet the operational objectives, both during dry and wet weather conditions." – USEPA

Louisville, KY SSO and CSO overflow abatement

- Complex and large system
- 5 regional WWTP
- 260+ pump stations
- 3,200 mi of sewer
- Ohio River Flood Protection System

ETRA TECH

Vision: Total System Optimization

• Operational challenges:

- Maximize WWTP
- Maximize storage
- Spatial and temporal variability of flows
- Changing conditions at any time
- Requires smart data and control:
 - Prediction
 - Optimization
 - Repsect contraints

I am in Control Day

Tool: Real Time Control System

Tulsa, OK Sanitary System Flow Equalization Basin Control

Lessons Learned

- Data governance
- Sweat the details
- Involve operations early
- Communications and staff buy-in
- Operational data to assess system performance
- Inform asset management and long term planning

Communication, communication and communication

Conclusion – benefits of smart data infrastructure

- Maximizing infrastructure
- Optimizing storage to reduce peak and overflows
- Understanding of system performance
- Proactive operations and responses
- Meeting regulatory requirements
- Improving asset management
- Adaptive management of LTCP implementation
- Prioritizing critical assets and future capital planning
- Enabling effective customer service and enhancing public notification.

Thank you!

Questions?

