

Swimming in Data

Collaboration to Collect, Review, and Effectively Use Data

Erika Casarano, AECOM, Evelyn Grainger, AECOM, Sharon Tsay, AECOM, Jeremy Hall, Massachusetts Water Resources Authority

January 27, 2020

Agenda

- MWRA's Post Construction
 Compliance Monitoring
 Project
- Collection, Review, and Effective Use of Data
- The Future of Data

Post Construction Compliance Monitoring Project (PCCMP)

- Project purpose:
 - To assess the attainment of the levels of CSO control set forth in the Authority's Long Term Control Plan (LTCP)

-LTCP:

- \$911 million program that began in 1987
- Reduced CSO discharge 86%
- -PCCMP:
 - Project began on November 8, 2017

 Inspect CSO regulators addressed in the LTCP

Closed outfall (top), former CSO discharge that now discharges stormwater, only (bottom)

- Inspect CSO regulators addressed in the LTCP
- Collect meter data at active CSO regulators

Meter data at an active CSO regulator

- Inspect CSO regulators addressed in the LTCP
- Collect meter data at active CSO regulators
- Upgrade and improve calibration of hydraulic model using data collected

InfoWorks ICM Model

- Inspect CSO regulators addressed in the LTCP
- Collect meter data at active CSO regulators
- Upgrade and improve calibration of hydraulic model using data collected
- Receiving water quality modeling and assessment

Charles River

Mystic River

- Inspect CSO regulators addressed in the LTCP
- Collect meter data at active CSO regulators
- Upgrade and improve calibration of hydraulic model using data collected
- Receiving water quality modeling and assessment

 Assess system performance for CSO control

Performance Assessment Data

1. Collection

- What data are needed?
- What data sources are available?
- What methodologies can be employed to collected data?

2. Review

- Do the data make sense?
- Are there trends in the data?
- Do other sources of data corroborate this data?

3. Effectively Use

- How can the data be used?
- How can the data be further analyzed?
- How does this inform our understanding of the system?

Swimming in Data

Interceptor meters Community meters 15-min flow data GIS data **Historical Data** Temporary meters 15-min velocity data SCADA Data **Meter Data Existing Data** Storm Reports 5-min depth data **Facility Data** Measure-downs **Regulator Data Record Drawings Operations Rim measurements Basemaps Project Data Regulator inspections Model Input Data** Community models Pipe diameters Tides Temperature Rainfall Data Overflow elevations 20 rain gauges Evaporation Groundwater Collection AECOM

Community Knowledge

- -CSO community meetings
- System knowledge
- Record drawings
- Existing collection system models
- -Additional metering data

Collection

Regulator Data

✓ Open/Closed Regulator

Closed outfall (top), former CSO discharge that now discharges stormwater, only (bottom)

AECOM

Review

Regulator Data

✓ Open/Closed Regulator

Collection

✓ Meter Installation

Metered regulator locations CSO meters (green), interceptor meters (blue)

Regulator Data

- ✓ Open/Closed Regulator
- ✓ Meter Installation
- ✓ Regulator Measurements
 - Pipe sizes
 - Overflow height
 - Rim elevations

Collection

Model Data

- Temperature
- Tides
- Evapotranspiration
- -Rainfall
- Metered depth, velocity, flow data for calibration

Collection

InfoWorks ICM Model

AECOM

Review

Do the data make sense?

Data need to be checked for accuracy before they are used

- Do the data make sense?
- Are there trends in the data?
- Do other sources corroborate this data?

Consequences of using bad or inaccurate data

- Over/under reporting metered overflows
- Incorrect model results
- Misrepresenting the physical regulator configuration in the model
- Additional coordination, meetings, and field visits

Data Review Examples

Data Type

Rainfall Data

Metering Data

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Rainfall
Measurement	It rained 2 inches in East Boston

Green dot indicates rain gauge location

Review

Effectively Use

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Rainfall
Measurement	It rained 2 inches in East Boston
Data for Comparison	Neighboring rain gaugesRadar

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Rainfall
Measurement	It rained 2 inches in East Boston
Data for Comparison	Neighboring rain gaugesRadar
Comparison Data Shows	 Neighboring rain gauges show 1.5" and 1.2" of rain during same period Radar rainfall shows higher intensity rain over East Boston than neighboring gauges

Green dot indicates rain gauge location

Review

ffectively Use

Data are compared to multiple sources of information to corroborate and validate measurements

Review

Data Type	Rainfall
Measurement	It rained 2 inches in East Boston
Data for Comparison	Neighboring rain gaugesRadar
Comparison Data Shows	 Neighboring rain gauges show 1.5" and 1.2" of rain during same period Radar rainfall shows higher intensity rain over East Boston than neighboring gauges
Conclusion	It likely rained 2 inches in East Boston

Green dot indicates rain gauge location

Data are compared to multiple sources of information to corroborate and validate measurements

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Field Measured Overflow Elevations	Regulator	
Field Measurement	The overflow elevation is 119.25 ft (MDC)	Structure	
Data for Comparison	Record drawingsModel elevations		Overflow to CSO
		Influent Pipe	Effluent Pipe

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Field Measured Overflow Elevations	Regulator	2
Field Measurement	The overflow elevation is 119.25 ft (MDC)	Structure	
Data for Comparison	Record drawingsModel elevations		Overflow to CSO
Comparison Data Shows	 Record drawing shows 119.25 ft Community model shows 119.25 ft 	119.25 ft	
		Influent Pipe	(/ Effluent Pipe

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	Field Measured Overflow Elevations	Regulator	
Field Measurement	The overflow elevation is 119.25 ft (MDC)	Structure	
Data for Comparison	Record drawingsModel elevations		Overflow to CSO
Comparison Data Shows:	 Record drawing shows 119.25 ft Community model shows 119.25 ft 	0	
Conclusion	High confidence in measured overflow elevation	Influent Pipe	(/ Effluent Pipe

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	CSO Overflow Data
Data shows	The meter in the outfall pipe suggests the regulator overflowed 0.5 MG

AECOM

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	CSO Overflow Data
Data shows	The meter in the outfall pipe suggests the regulator overflowed 0.5 MG
Data for Comparison	Influent level dataRainfall dataRegulator overflow scattergraph

AECOM

Review

Data are compared to multiple sources of information to corroborate and validate measurements

Review

Data Type	CSO Overflow Data
Data shows	The meter in the outfall pipe suggests the regulator overflowed 0.5 MG
Data for Comparison	Influent level dataRainfall dataRegulator overflow scattergraph
Comparison Data Shows:	Level meter in the influent pipe exceeded the overflow elevation Storm event was low intensity, long duration Event is consistent with scattergraphs of previous events

Data are compared to multiple sources of information to corroborate and validate measurements

Data Type	CSO Overflow Data
Data shows	The meter in the outfall pipe suggests the regulator overflowed 0.5 MG
Data for Comparison	Influent level dataRainfall dataRegulator overflow scattergraph
Comparison Data Shows:	Level meter in the influent pipe exceeded the overflow elevation Storm event was low intensity, long duration Event is consistent with scattergraphs of previous events
Conclusion	There is high confidence in the metered overflow

AECOM

Review

Consequences of Poor Data

Data Type

Rainfall Data

Regulator Measurements

Metering Data

Potential Consequences

- Incorrect understanding of rainfall depth/intensity that likely causes CSO activations
- Modeled and metered activations do not match
- Incorrect overflow
 elevation, over/under
 predict CSO activations
- Poor understanding of hydraulics of the regulator
- Under/over estimate activation frequency, durations, volume of CSO discharge
 - Calibrate hydrology to incorrect inflow values

Effectively Use

Review

Data Trends & Anomalies: Overflow Scattergraphs

Regulator

• NO METER ACTIVATION • METE

METER ACTIVATION

As more data are collected, the rainfall depth and intensity to cause a CSO overflow can be more accurately approximated

Data Trends & Anomalies: Temperature Impacts on Rainfall

Data Trends & Anomalies: Temperature Impacts on Rainfall

- Significant time difference in response between gauges A/C and B/D
- Higher intensity response seen by B/D once temperature was above freezing
- Investigation found that A & C were heated gauges, while B & D were not

Review

Conclusion: Impacts on Post Construction Monitoring Program

- Confidence in data leads to confidence in the model and understanding of the system
- How the data are understood and used provides a more accurate performance assessment

Swimming in Data

Collaboration to Collect, Review, and Effectively Use Data

Erika Casarano, AECOM, Evelyn Grainger, AECOM, Sharon Tsay, AECOM, Jeremy Hall, Massachusetts Water Resources Authority

January 27, 2020