

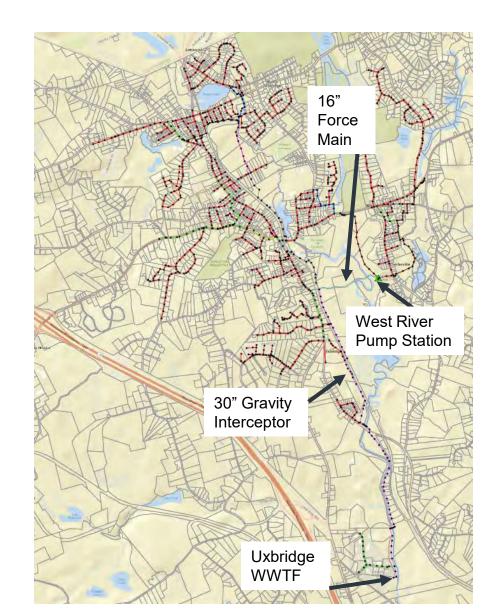
Non-Destructive Investigation and Proactive Hydrogen Sulfide Corrosion Rehabilitation of Collection System Infrastructure – Uxbridge, MA Case Study

James Legg | Town of Uxbridge, MA Anastasia Rudenko PE, BCEE, ENV SP | GHD Sara Greenberg | GHD Benn Sherman | Town of Uxbridge, MA **NEWEA 2020**

Session overview

2 Hydrogen sulfide investigation technologies

Non-Destructive Investigation


Rehabilitation options

Background

Uxbridge collection system

- Original sewer system constructed in the late1970s
 - RCP, AC, PVC, and DI Pipe
 - ~ 189,000 LF of gravity sewer
 - ~ 6,000 LF of Force Main
 - Five pump stations

Force main

- Class 52 DI Pipe
- Force main route
 - Inverted siphon
 - Easement
 - Wellfield (lined)
- Access Points
 - Two air release valves
 - Manhole (entry point for lining)

Initial investigations

- Visual inspection of interceptor manhole indicated hydrogen sulfide degradation
- Turbulent conditions at this location indicated high hydrogen sulfide corrosion vulnerability:
 - Interceptor manhole
 - Downstream Reinforced Concrete
 Pipe (RCP) gravity sewer
 - Upstream Ductile Iron (DI) force main

The Concern

Plymouth bypassing 3 miles of sewer main

Plymouth responds to sewer main break no. 2

Plymouth sewer problems could cost millions

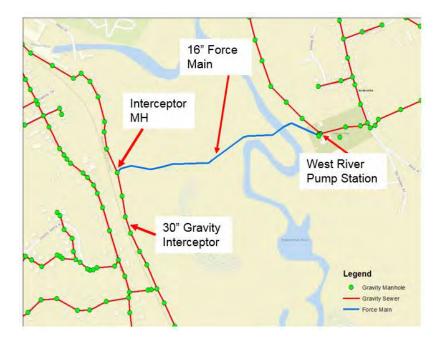
By: Robert Goulston Updated: Apr 1, 2016 - 6:40 PM

E 212

STREAM STREAMS

Closed Circuit Television (CCTV) inspection

- Inspected
 - 1 upstream pipe segment
 - 2 downstream pipe segments
- CCTV indicated minor defects
 upstream of the interceptor manhole
- CCTV of downstream gravity interceptor found:
 - Aggregate visible
 - Intruding Sealing Ring
 - Infiltration gusher at broken joint



CCTV inspection video

ST UTATION DADOR ST D Heal Date & BID. Ln. Tic Sл Ma Weather: SIGHEL to SMIHES

Project components

- Town concerned about structural integrity of:
 - Gravity Sewer CCTV
 - Interceptor MH Visual Inspection
 - Force Main
- Needed non-destructive testing method to assess force main integrity

Hydrogen Sulfide Investigation Technologies

Technology summary

Acoustic Technologies

- EchoLogics
- Pure Technologies Smart Ball
- **Electro-Magnetic Technologies**
 - EchoLogics

Ultrasonic

• LPI, Inc.

Photos from Pure Technologies (Smartball)

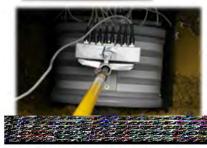


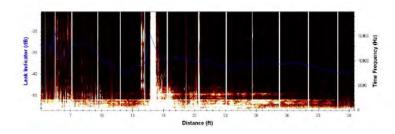
Photo from EchoLogics

Acoustic technologies

Method 1 (Echologics)

- Acoustic sensors applied to exterior of pipe
- Detects gas pockets between sensors
- Excavations needed at periodic intervals

Method 2 (Smartball)


- Free-swimming tool inserted into pipeline
- Acoustic sensors applied to exterior of pipe
 - Collects acoustical data from within pipeline
 - Detects sound of pressure change in a leak

Both methods recommended pipe pressurization to improve accuracy of inspection

• Not recommended for this project

Photos from Pure Technologies (Smartball)

Electro-Magnetic technologies

- Broadband electromagnetic pipe scanning
- Recommended <u>following acoustic testing</u>
- Measures remaining thickness of metal
- Pipe thickness loss detected through signal distortion
- Not recommended for this project

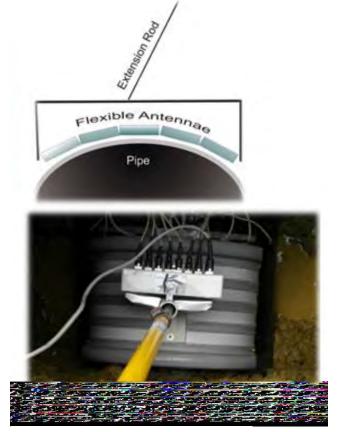
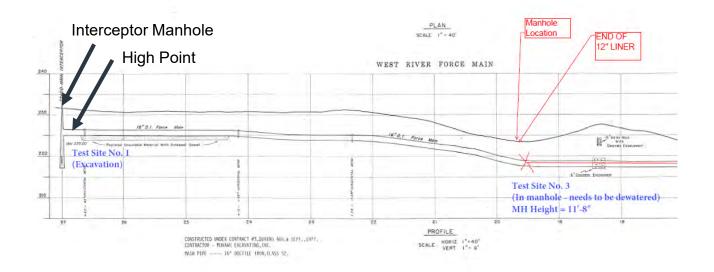


Photo from EchoLogics


Ultrasonic technologies

- Thickness measurements taken using ultrasonic soundwaves at equally spaced positions around exterior pipe circumference
- Provides readings at limited locations
 - Not capacity of continuous readings down a length of pipe
 - Requires strategic testing locations (high points)
- Can be used without taking pipe out of service
- Does not require pipe pressurization
- Considered least risky and cost effective option
 - Recommended for this project

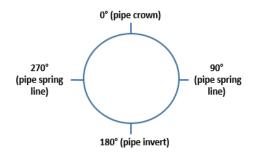
Non-Destructive Investigation

Overview

- Ultrasonic testing does not provide continuous reading
- Targeted testing at:
 - Localized high points
 - Easily accessible locations (manholes)

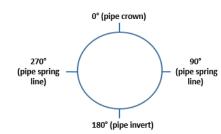
Ultrasonic testing

6 locations tested by LPI, Inc.

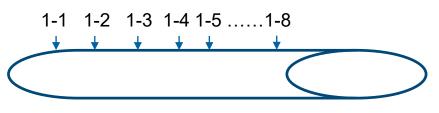

- 4 localized high points
- 2 easily accessible locations (manholes)

Ultrasonic testing

- Grinder used to remove small portion of exterior pipe coating at equally-spaced measurement locations
- Thickness measurements taken at multiple points along each length of exposed pipe

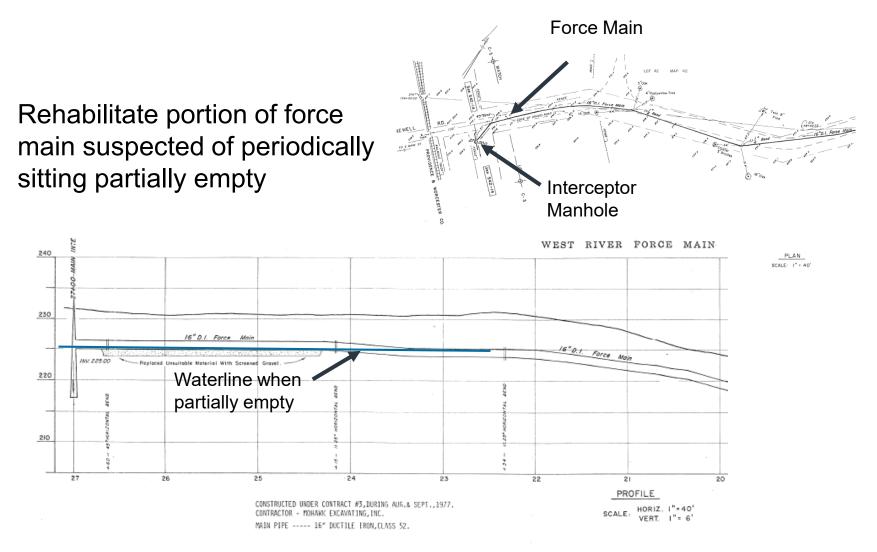

Testing results

- Testing results indicated wall thickness losses between 0% -49%
- Largest percentage of wall thickness loss immediately upstream of interceptor manhole (high point)
 - This section of pipe is partially empty at times
 - Highest corrosion rate along pipe spring-line



Force main – High point (Location 1)

Test #	Crown (0°)	Spring Line (90°)	Invert (180°)	Spring Line (270°)
1-1	6%	24%	13%	0%
1-2	11%	0%	0%	22%
1-3	2%	23%	15%	-3%
1-4	10%	31%	10%	37%
1-5	13%	46%	33%	41%
1-6	14%	36%	6%	46%
1-7	14%	49%	10%	44%
1-8	22%	17%	13%	29%


Minimum Thickness Calculations

Testing results compared to ANSI/AWW C150 minimum thickness calculations for Class 52 DI Pipe – based on:

- Trench load (typically controlling parameter in buried pipe)
- Internal pressure (typically controlling parameter in manholes)

Location Number	Design Thickness Parameter	% Wall Thickness Loss Detected	ANSI/AWWA C150 Calculated Minimum Allowable Thickness Loss
1	Buried – Trench Load	0% - 49%	29%
2	Manhole – Internal Pressure	0%	87%
3	Manhole – Internal Pressure	0% - 19%	87%
4	Buried – Trench Load	0% - 6%	29%
5	Manhole – Internal Pressure	1% - 21%	87%
6	Manhole – Internal Pressure	0% - 6%	87%

Rehabilitation recommendations

Rehabilitation Options

Scope of project

Rehabilitation needed for:

- 30" Reinforced Concrete Pipe downstream of interceptor manhole
- Interceptor manhole
- 16" Force Main immediately upstream of interceptor manhole

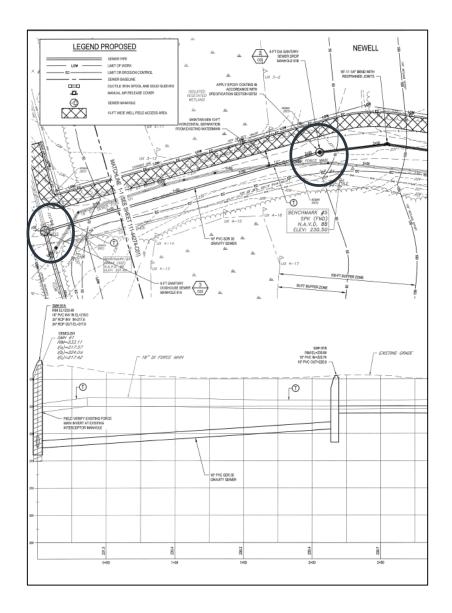
Gravity interceptor rehabilitation options

Structural Epoxy

- Rebuilt pipe crown
- Apply epoxy with carbon fiber layer for structural reinforcement
- Cured In Place (CIPP) Pipe
 - "Pipe within a pipe"
 - Structurally Independent

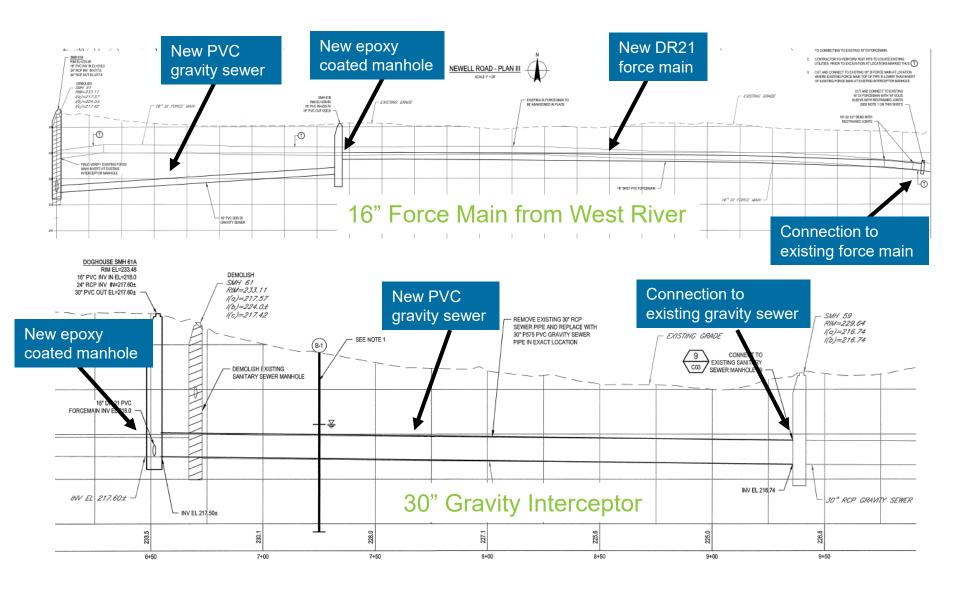
Pipe Replacement

- Removal and excavation
- Replacement with corrosion resistant pipe


Pipe replacement determined to be most cost effective option

Interceptor manhole

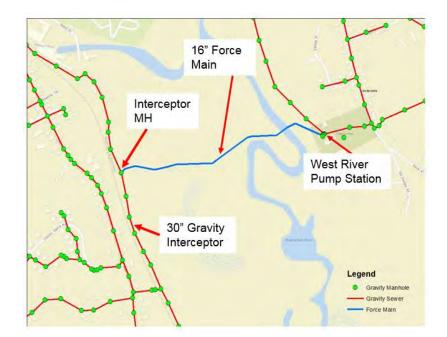
- Main interceptor manhole replacement
- Installation of a new force main discharge manhole
 - Split function
 - Allows for easier future bypassing
 - Minimizes force main shutdown during construction
- Epoxy coat both manholes



Force main

- Lining
 - Manufacturer indicated lining can only be inverted through one 45° bend
 - Excavation needed for additional bends
 - Multiple bends, not considered further
- Pipe replacement
 - Removal and excavation
 - Replacement with corrosion resistant pipe
- Pipe replacement determined to be most cost effective option
- Air release valve replacement

Design drawing



Construction

Sequencing

Two bypasses

- Gravity sewer
 - Bypass set up during gravity sewer construction
 - Upstream manhole to downstream manhole
 - Doghouse manhole
- Pump Station
 - Existing force main active during new force main installation
 - Specified pump station shutdowns for tie ins
 - When needed, Town trucked flow to manhole upstream of bypass

Construction

Bypass Pumping

Catastrophe avoided

Construction Costs

- Engineer's Estimate = \$575,000
- Low Bid = \$520,000 (and final construction cost)

Summary

- Town proactive assessment of vulnerable infrastructure indicated multiple corroded components
 - Force Main
 - Interceptor Manhole
 - Downstream Gravity Interceptor
- Ultrasonic thickness testing provided a non-destructive method of diagnosing force main condition without taking it offline
- Use of corrosion resistant materials in construction reduced vulnerability of infrastructure

Questions

jlegg@uxbridge-ma.gov anastasia.rudenko@ghd.com NEWEA 2020