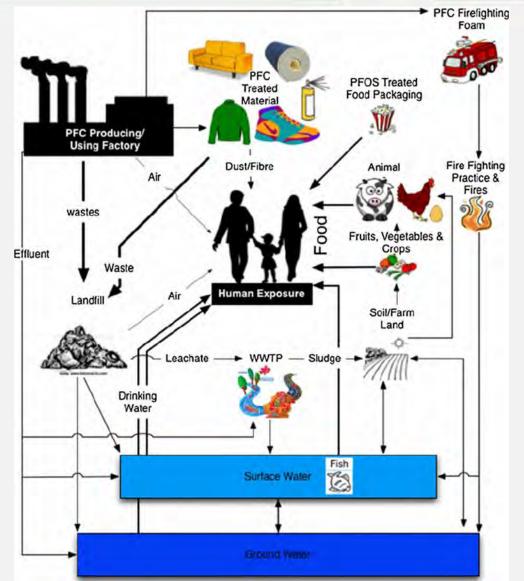

Distribution of Per- and Polyfluorinated Alkyl Substances (PFAS) in Wastewater Treatment Plants

Presenter : Elham Tavasoli Co-author: Scott Greenwood, Jenna Luek PI: Dr. Paula J. Mouser Co-PI: Dr. James P. Malley

January 2020

Why PFAS?

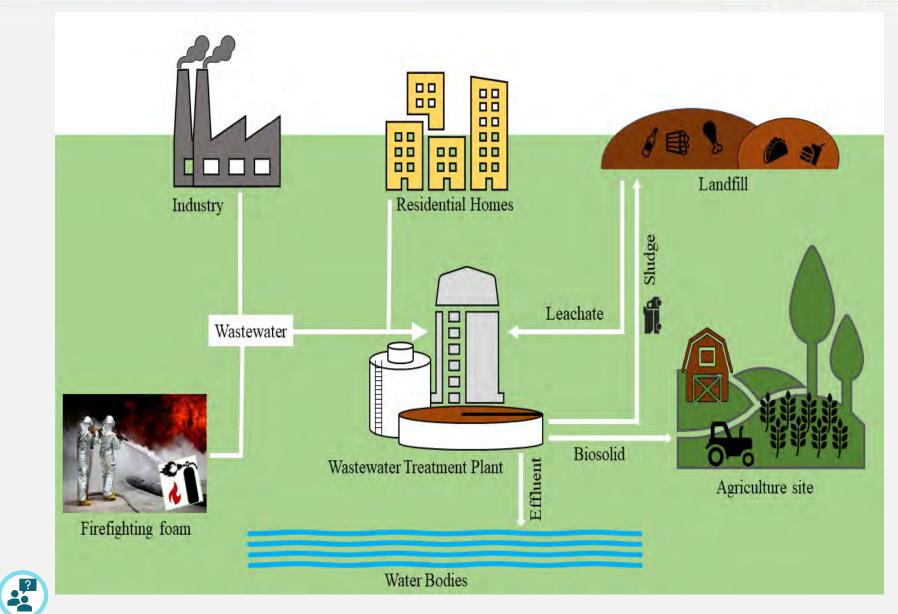


□ Persistent and bioaccumulative

□ Thermally and chemically stable

□ Adverse human health impact

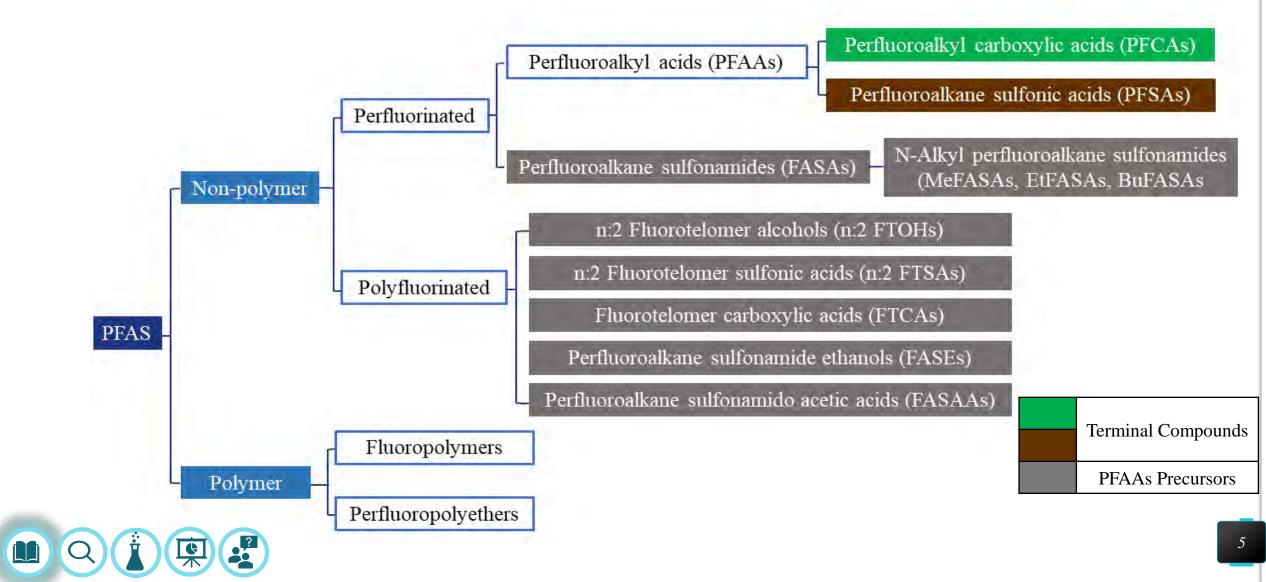
e

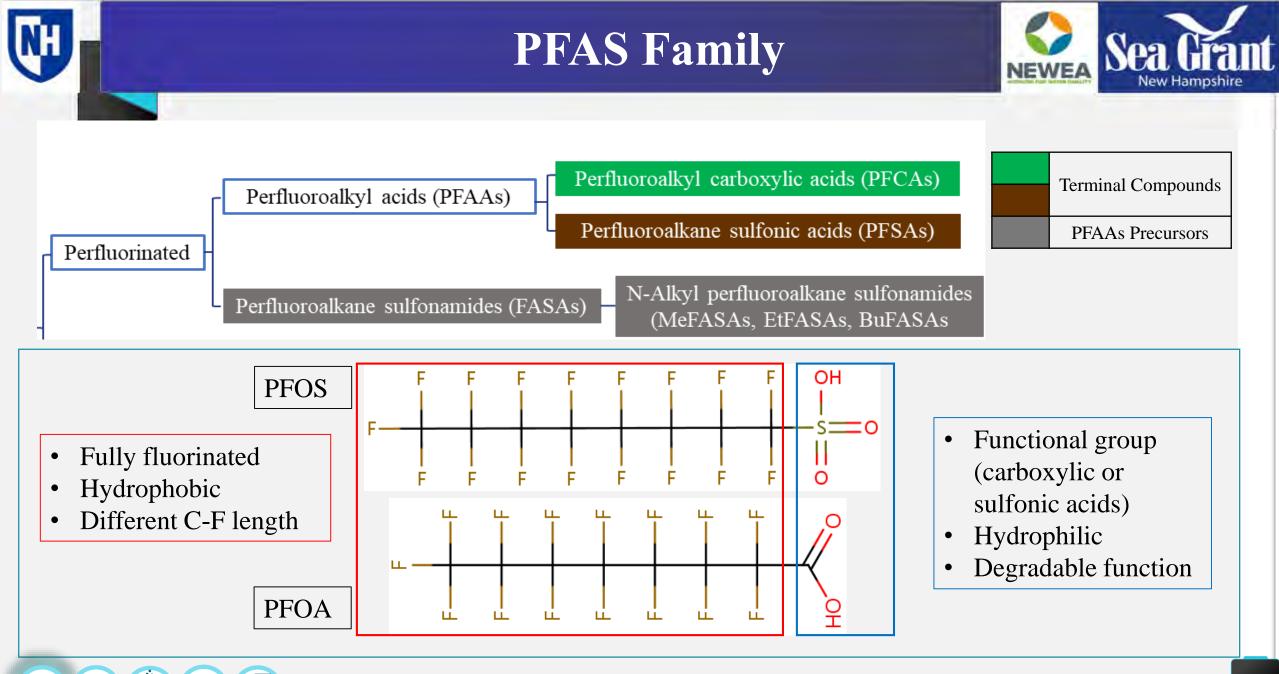


F

Ť

Why WWTP?





4

PFAS Family

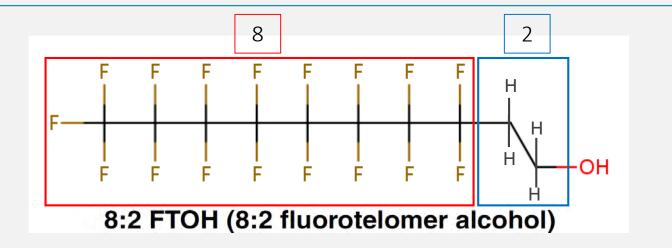
¢

PFAS Family

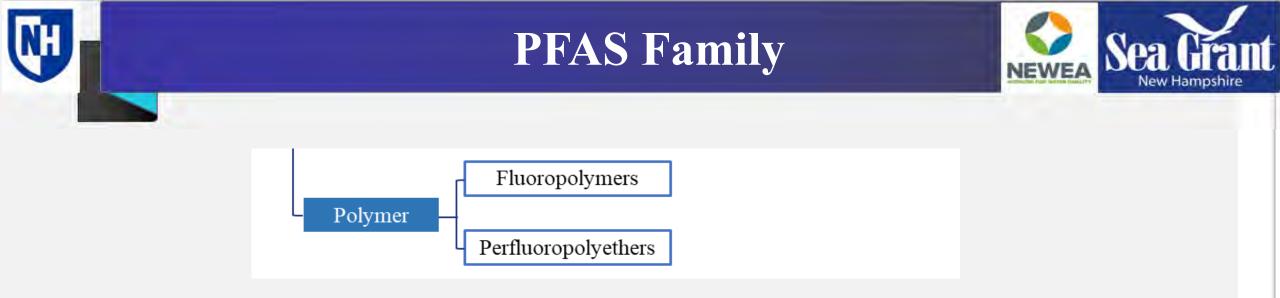
n:2 Fluorotelomer alcohols (n:2 FTOHs)

Polyfluorinated

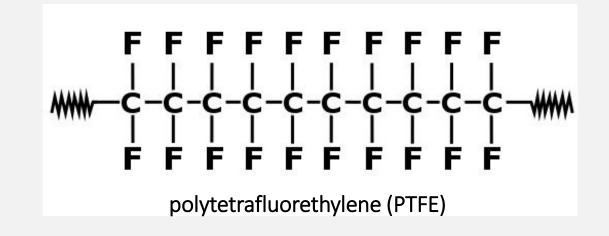
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)


Fluorotelomer carboxylic acids (FTCAs)

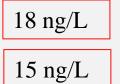
Perfluoroalkane sulfonamide ethanols (FASEs)


Perfluoroalkane sulfonamido acetic acids (FASAAs)

Terminal Compounds
PFAAs Precursors


- Partially fluorinated
- Non-fluorine atoms (O,H) attached to at least one carbon atom

- Large molecules formed by combining many identical smaller molecules in a repeating pattern
- have/not functional group
- Potential PFAAs precursors
- Hydrophobic



PFAS Family

12 ng/L 11 ng/L **18 Terminal End Products & Intermediate Metabolites**

2

F

ANALYTE Perfluoroalkylcarboxylic Acids (PFCAS)	ACRONYM
Perfluorobutanoic acid	PFBA
Perfluoropentanoic acid	PFPeA
Perfluorohexanoic acid	PFHxA
Perfluoroheptanoic acid	PFHpA
Perfluorooctanoic acid *	PFOA
Perfluorononanoic acid *	PFNA
Perfluorodecanoic acid	PFDA
Perfluoroundecanoic acid	PFUnA
Perfluorododecanoic acid	PFDoA
Perfluorotridecanoic acid	PFTrDA
Perfluorotetradecanoic acid	PFTA
Perfluoroalkylsulfonic Acids (PFASs)	
Perfluorobutanesulfonic acid	PFBS
Perfluoropentanesulfonic acid	PFPeS
Perfluorohexanesulfonic acid \star	PFHxS
Perfluoroheptanesulfonic acid	PFHpS
Perfluorooctanesulfonic acid 🔺	PFOS
Perfluorononanesulfonic acid	PFNS
Perfluorodecanesulfonic acid	PFDS

6 Precursors

Perfluorooctanesulfonamides (FOSAs)	
Perfluorooctanesulfonamide	FOSA
Telomer Sulfonates	
1H,1H,2H,2H-perfluorohexane sulfonate (4:2)	4:2FTS
1H,1H,2H,2H-perfluorooctane sulfonate (6:2)	6:2FTS
1H,1H,2H,2H-perfluorodecane sulfonate (8:2)	8:2FTS
Perfluorooctanesulfonamidoacetic Acids	
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA

* Proposed Drinking Water Limits-NHDES

PFAS Knowledge and Gaps

What We 'Know'

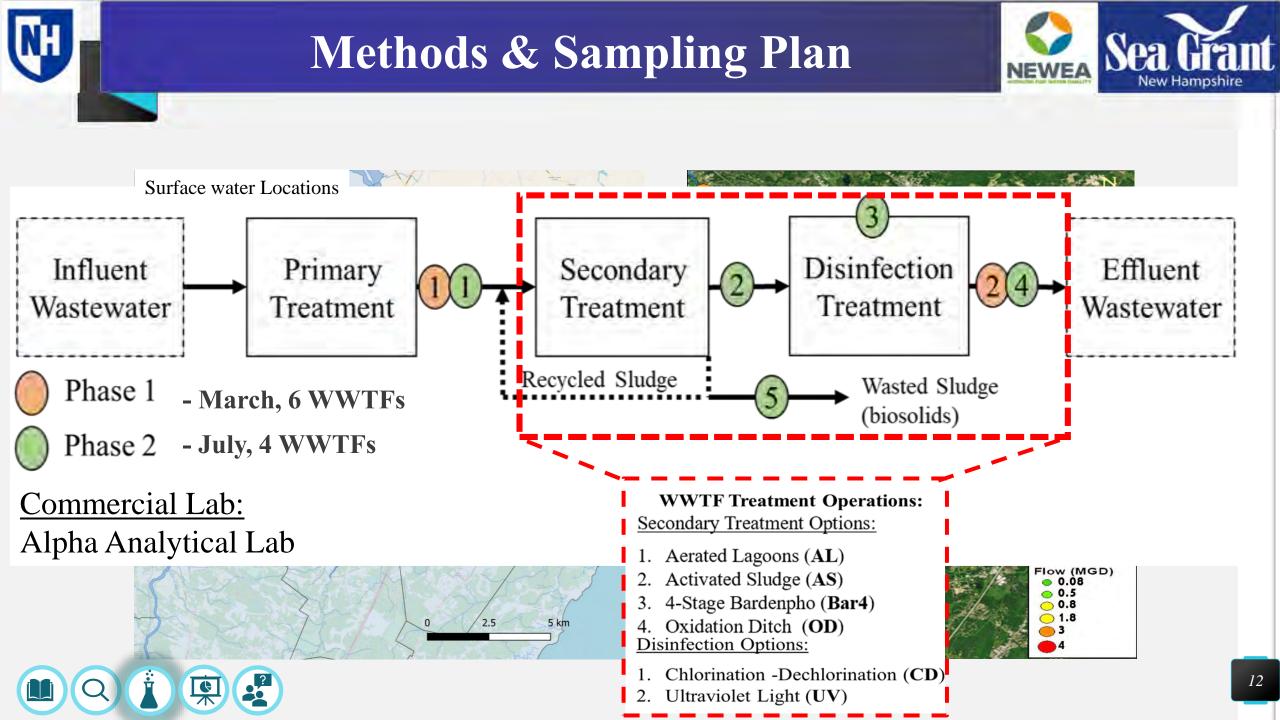
1. PFAS are toxic to both human and animals (e.g. PFOA and PFOS: elevated cholesterol, obesity in human and reproductive effect on animals)

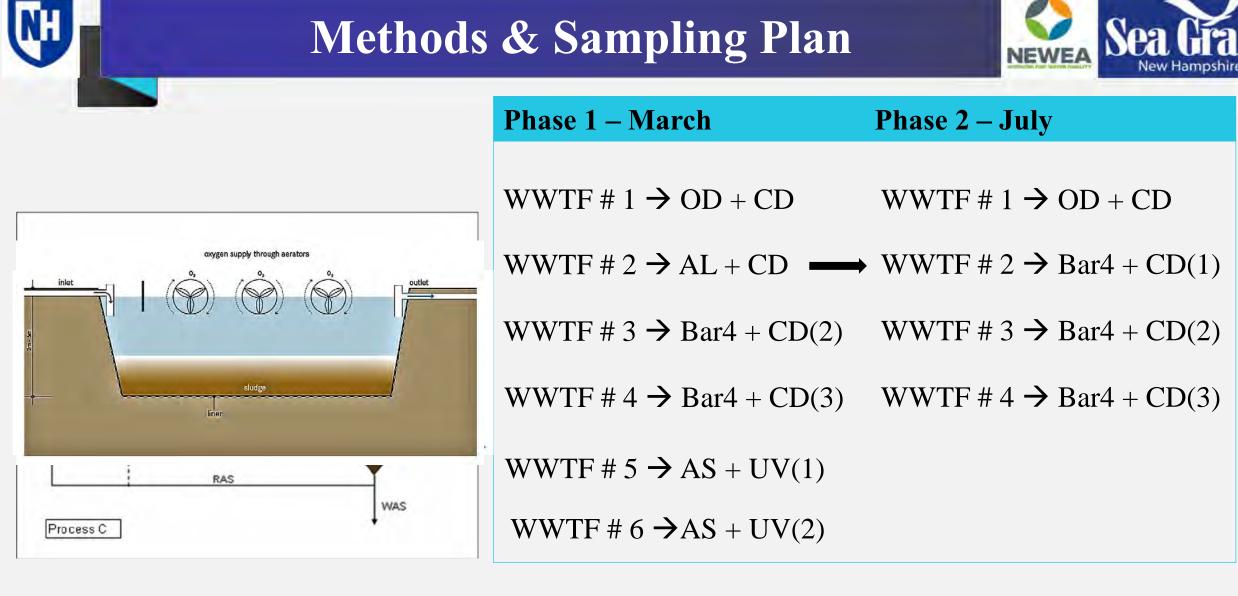
2. Drinking water PFAS concentrations limits (e.g. PFOA, PFOS, PFNA, PFHxS)

3. PFAS removal in drinking water plants (e.g. GAC, Membrane filtration, Ion Exchange, Plasma)

4. PFAS biotransformation and their precursors degradation during biological treatment in WWTFs (e.g. AS, OD)

5. WWTFs as a main source of PFAS distribution to water bodies


Current Gaps

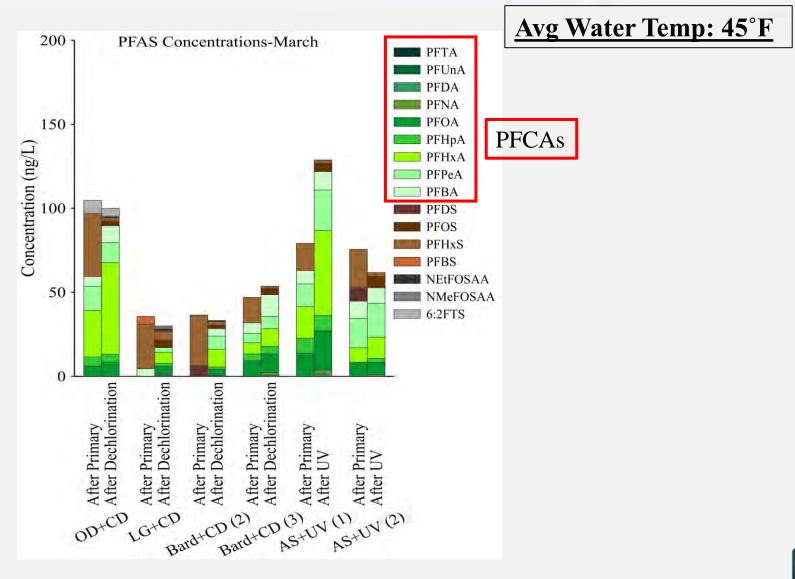

- •Effect of other PFAS constituents
- •Lack of toxicity values for many PFAS compounds
- Other PFAS constituents limits
 Different environmental matrices
- Mechanism not well understood
 incomplete degradation
 Waste brine management
- PFAS fate during secondary treatmentLack of PFAS precursors knowledge
- •PFAS fate after discharging to water bodies from effluent of WWTFs

- 1. What **portion** of PFAS are being **detected** within local WWTFs?
- 2. How does **WWTF design** and operation influence **PFAS diversity and removal efficiency**?
- 3. Are PFAS concentrations influenced by **seasonal variation**?
- 4. What is the **distribution of PFAS** in receiving **water bodies** (Great Bay Estuary) versus the PFAS in the WWTFs?

PFAS Detection

WWIF#					1			2	2			1	3			4	1		4	5	6	6			
Treatment		OD+CD			AL+CD Bard+CD(1)				Bard+CD(2)				Bard+CD(3)				JV(1)	AS+UV(2)				Non-Dete			
halvsia	Group	Compound	Infl	Influent		Effluent		Influent		Effluent		Influent		Effluent		uent	Effluent		March		Ma	irdh			Detected
A maty sis			March	July	March	July	March	July	March	July	March	July	March	July	March	July	March	July	Inf	EM	Inf	Eff			
		PFBA																							In > Eff
		PFPeA																							In < Eff
		PFHxA																							
		РГНрА																							
	PFE	PFOA																							
	PFCA(11)	PFNA																							
	11)	PFDA																							
		PFUnA																							
		PFDoA																							
		PFTrDA																							
24		PFTA																							
24 PFAS		PFBS																							
A S		PFHxS																							
	PFS	PFOS																							
	PFSA(7)	PFDS	•	Co	nsis	tont	117	P F		c /	DFG		on	44	Dro	our	SOF	e do	tact	ha					
	7)	PFPeS					•																		
		PFHpS	•	Ge	nera	llv.	PF(CAs	S CO	ncei	ntra	tion	s in	crea	ased	in a	all V	WW	TF	s in	bot	h se	asons		
ŀ		PFNS				•																			
	PR	6:2FTS	•	MC	ore P	FC	As (lete	ected	d th	an F	FS	A ai	nd p	recu	ursc	ors								
	EC	8:2FTS]	
	UR	NMeFOSAA																							
	10S	NEFOSAA																							
	PRECURSOR(6)	44:2FTS																							
		FOSA																							
Ť																									

PFAS Detection

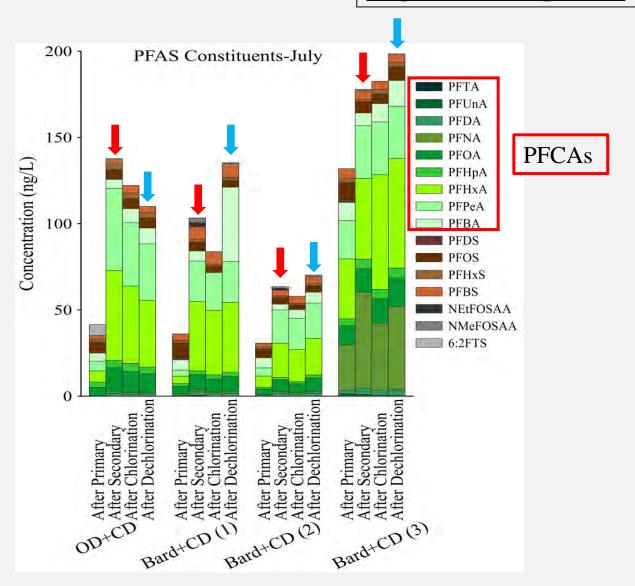

-														_	\											
	WWTI	F#		1	l					3			4	4	5		6		Surface water Samples						Non-Detect	
	Treatm	ent	OD+CD			AL+CD Bard+CD(1)		Bard+CD(2)				Bard+	-CD(3)	AS+U	AS+UV(1)		UV(2)	Hilton	Mill	Adams	Great	Squam	-			
Analysis	Group	Compound	Infl	Influent		Effluent		Influent Effluent		Influe	Influent Efflu		Infl	uent	Effluent	Mai	March		rch	Park	Pond	Point	Bay	-scott		Detected
Anarysis	Group	Compound	March	July	March	July	March	July Ma	rch July	March	July	March July	March	July	March July	Inf	Effl	Inf	Eff	(July)	(Aug.)	(Aug.)	(Aug.)	(Aug.)		In > Eff
		PFBA	I.m.													1000								In < Ef		In < Eff
		PFPeA																								
		PFHxA																								
		PFHpA																								
	PF	PFOA																								
	PFCA(11)	PFNA																								
		PFDA																								
		PFUnA																								
		PFDoA																								
		PFTrDA																								
		PFTA																								
24 PFAS	PFSA(7)	PFBS												1												
FA		PFHxS						_					-		100	1		-			1			1		
2		PFOS																								
		PFDS																								
	(Ĵ	PFPeS				~ .		1 0								~		-								
		PFHpS	•	5 ł	2 F.($\Box \mathbf{A}$	s at	าd 2	PF	'SA	S V	vere c	lete	ecte	ed in	(ire	at	Ba	V.							
		PFNS																	•							
	Р	6:2FTS	•	Sa	me	c	onst	itne	nts	dete	ect	ed in	SIL	rfa	ce w	atei	• A	nd	W	\mathbf{W}'	ТР					
	RE	8:2FTS						itut					5 4						••	• •	_	•				
	CU	NMeFOSAA																								
	PRECURSOR(6)	NEtFOSAA																								
	OR	4:2FTS																								
	6	FOSA																								
				_																					1	15
)Q																									15

- PFCAs were dominant detected compounds.
- No consistent trend in PFAS concentrations in effluent of all WWTPs in March.

?

Ģ

Avg Water Temp: 71°F

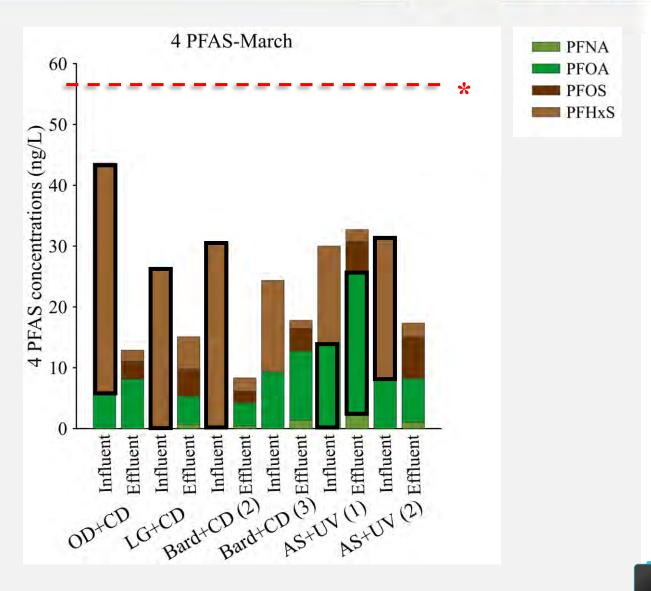

• PFAS concentrations increased

• Effcrent watted Decrator detected, compounds.

Caveats:

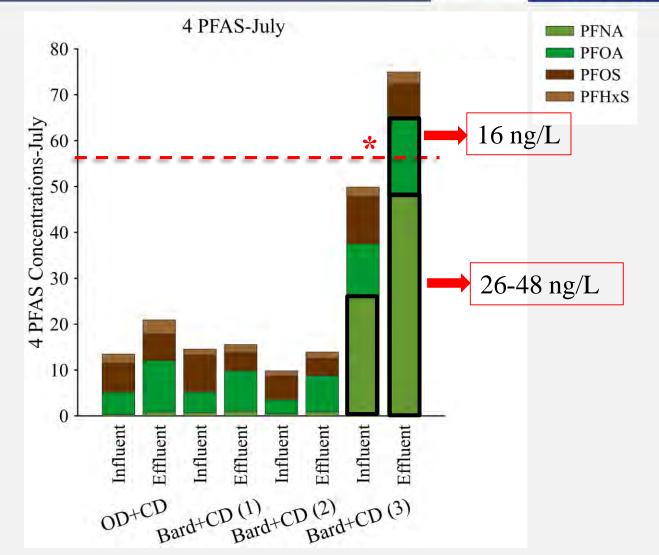
- •1. PAAs spear the information in the secondary treatment, it may
- 2. defitereigher Temperature in Julytection limits in influent and effluent)
- 3. Sampling method (A grab sample)

Ģ



 The sum of the 4 PFAS concentrations were lower than proposed Maximum concentration limits(MCL) regulated by NHDES for influent and effluent of all WWTFs

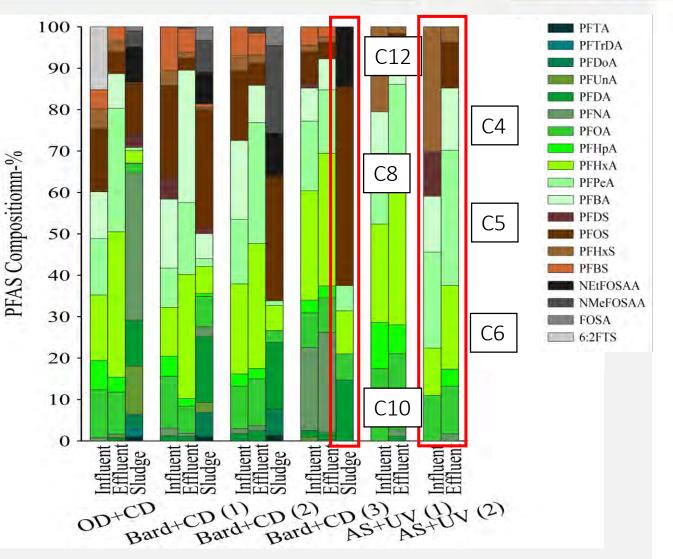
<u>* Σ of Four PFAS Proposed MCL=56 ng/L</u>


e

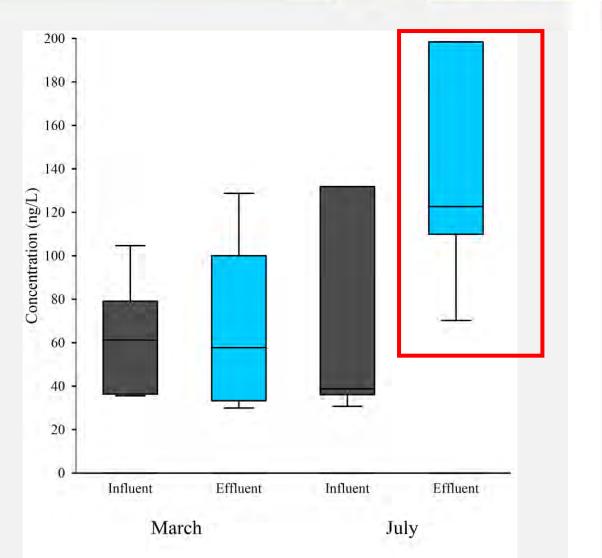
NEWEA Sea Grant New Hampshire

- The sum of **4 PFAS** concentrations were **lower** than proposed Maximum concentration limits(MCL) regulated by **NHDES** for influent and effluent of three WWTFs
- **PFNA** (MCL:11 ng/L), **PFOA** (MCL:12ng/L) were detected **higher** in effluent of **Bard+CD** (3)

?


<u>* Σ of Four PFAS Proposed MCL=56 ng/L</u>

PFAS Fate



- **18 constituents** were detected in Sludge and **11 constituents** are detected in Effluent.
- The contribution of Long-chain compounds were detected more in sludge due to higher hydrophobicity
- The contribution of **short-chain** compounds were detected more in **aqueous** phase, due to their **hydrophilicity**

PFAS Seasonal Variation

- Total concentration of PFAS **increased** in effluent of the summer samples.
- The total influent concentration of PFAS were not significantly different between the two seasons.

Main Result

- 1. What portion of PFAS are being detected within local WWTFs?
- 8PFCAs, 4PFSAs, and 4 Precursors were detected
- 2. How does WWTF design influence PFAS diversity and removal efficiency?
- None of the designs seems to efficiently remove PFAS (4-18% removal)
- 3. Are PFAS concentrations influenced by seasonal variation?
- The effluent concentration of second season increased
- 4. What is the distribution of PFAS in receiving water bodies (Great Bay Estuary)?
- 5 PFCAs and 2 PFSAs were detected

