Innovative Process for Granulation of Continuous Flow Conventional Activated Sludge

Bev Stinson - Ph.D, Global Wastewater Technology Leader Jeff Reade – Senior Wastewater Process Specialist

January 29, 2020

Introduction

- The objective of this presentation is to:
- Introduce Aerobic Granular Sludge (AGS), including mechanisms for formation and benefits
- Discuss "conventional" application of AGS
- Review the development of a continuous-flow granular sludge process for BNR

What is Granular Sludge?

- Sludge granule is a tightly aggregated mass of microorganisms in a matrix of extra polymeric substances (EPS)
- A cross between floc and fixed film growth
- Their large size (> 0.2mm) and density allow for excellent settling characteristics = more compact WWTPs

Reference: Sarma, S.J. et al., 2017. Finding knowledge gaps in aerobic granulation technology

Granular Sludge Relies on Dominance Slow Growing Microorganisms

- Treatment processes that rely on slow-growing bacteria are better at granulation
- Anaerobic systems were the first granular sludge processes developed (Biothane[™], Biobed[™]) to treat high strength soluble COD waste

Reference: van Lier, J.B. et al., 2015. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

Aerobic Granular Sludge

- Developing aerobic granular sludge (AGS) for treating domestic wastewater has been more challenging
- Growth from floc to granule in an aerobic environment more complex

Reference: Sarma, S.J. et al., 2017. Finding knowledge gaps in aerobic granulation technology

Slow Growing Organisms Enhance Granule Morphology

- Feeding PE under anaerobic conditions selects for organisms that outcompete filamentous aerobic heterotrophs
- PAO's & GAO's do not have a filamentous morphology and allows for a reliably stable granule

Reference: adapted from van Loosdrecht, M., 2013. Advances in Aerated Granular Sludge Technologies (WEF presentation).

Granule Porosity Both a Strength and a Vulnerability

- Porosity allows for diverse ecological niches and biological conversions
- Porosity a strength & vulnerability

Reference: adapted from Nancharaiah, Y.V. et al, 2018. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications

Granules Vulnerable with excessive attachment of fast growing organisms

- Pores can be clogged by overgrowth of filamentous bacteria on the outer layer when rbCOD is present under aerobic conditions.
- Reduction of porosity reduces mass transfer, internal core is consumed & granule disintegrates
- Need to control fast growing bacteria typically found in activated sludge systems

Reference: Franca, R.D.G. et al. 2018. Stability of aerobic granules during long-term bioreactor operation.

Nereda® - Batch "SBR" Granular Sludge

- An important milestone in the development of AGS was adding an anaerobic selector – the 'Feast' stage
- Nereda®, the first commercialized AGS, uses a batch process
- After the aeration phase and sludge settles, PE is fed to the reactor

Promotes High rbCOD Concentration Contact with Granules to Overcome Diffusion Gradient & Feast Condition

Reference: adapted from van Loosdrecht, M., 2013. Advances in Aerated Granular Sludge Technologies (WEF presentation).

Picture Courtesy Delft Technical University

Nereda® Aerobic Granular Sludge

The settled volume of sludge after 5 minutes is similar to that after 30 minutes

- SVI 5 / SVI 30 ≈ 1.0

Conventional Activated Sludge

Benefits of Aerobic Granular Sludge

Garmerwolde, NL WWTP Nereda Footprint Advantage – 75% Footprint Reduction

Garmerwolde STP

- Nerada add-on designed for 40% of total plant flow .
- Treating 8-10 mgd on average in two
 2.5 MG reactors.
- 55% of total plant flow in fraction of footprint.
- Achieving TN <=7 and TP<= 1</p>

Aerobic Granular Sludge for Other Process Configurations?

– SBR Nereda® Aerobic Granular Sludge

- Batch process, well established at >30 plants
- Not easily amenable to upgrading existing conventional activated sludge process
- Preferred Min. SWD = 18' (5.5m)

Nereda®

Continuous Flow Granular Activated Sludge – R&D

 Adapting conventional activated sludge BNR to produce granular sludge

Conventional Activated Sludge Enhanced Biological Phosphorus Removal (EBPR) Systems – A2O

- 1. Anaerobic zone VFA formation (Fermentation) & Uptake (Phosphorus Release)
- 2. Anoxic Zone RAS and MLIR Nitrate Reduction
- 3. Aerobic zone ammonia oxidation to NOx & Luxury Phosphorus Uptake
- 4. Remove Phosphorus in the WAS

Adapting Activated Sludge For Smaller, Simpler Phosphorus Removal System - Westbank Process

AECON

- 1. Smaller Concentrated Anaerobic zone 33% less volume less cost & space
- 2. Organics fermented to VFA in fermenter less volume, cost, space
- 3. Stable Low ORP Less / No NOx DO intrusion More Reliable Performance
- 4. More diverse & stable population of Phosphorus Accumulating Organisms

Why Is Westbank A Good Baseline For Mainstream Granulation?

- High F:M Using The Fermentate
- Ability To Step-feed The RAS In Westbank to control the F:M in the feast stage

Granule formation relative to F:M

Adapting the Westbank BNR Process to AGS

In BNR fermenter supernatant is high in VFAs
 (e.g. acetate) and is the ideal carbon source for PAOs

Parameter	Fermenter Supernatant (Kelowna WWTF)
VFA Total, mg/L	226
VFA, % acetate	56%
рН	6.4
Alkalinity, mg/L (as CaCO ₃)	260
COD soluble, mg/L	644
TSS, mg/L	203
Ammonia, mg N/L	27
Phosphate, mg P/L	10

AECOM / City of Penticton AWWTP Granular Sludge Full Scale Demonstration

- Existing influent flow = 2.9 mgd
- Two independent trains with PE equally split just upstream of the bioreactor inlet
- Final effluent discharged to nearby river with TP < 0.20 mg P/L and TN < 6.0 mg/L (based on annual average)
- Existing decommissioned digester converted to fermenter

Adapting the Westbank BNR Process to AGS

- Westbank BNR process provides the right conditions for AGS
- Just need a way to select for the heavier particles and waste lighter floc
- How about a plate settler?

Installation of Lamella Plate Settler for Surface Wasting

Lamella plate settler installed (without pump)

AECOM

Section

AECOMs Continuous Flow Granular Sludge Process Proves to be Very Successful In Full Scale Demonstration

Penticton AGS Pilot – Settling Comparison

• Sludge in Demo Train settles faster

23

Sludge settlement after 5 minutes (SVI 5) at same MLSS

Penticton AGS Pilot – Settling Comparison

• SVI 30 significantly lower in the pilot train (Bio 2) compared to the control train (Bio 1)

TAYLOR® Bio 2 Bio 1 RESET (pilot)

Sludge settlement after 30 minutes (SVI 30) at same MLSS

Settling Video

Improved settling - 5 min settling almost equal to 30 min settling in AECOM Mainstream Granulation Demonstration Test Train

27

Sludge Size Characteristics

AECOM

28

Nutrient Removal Performance

Two-stage Solids Separation To Enhance Recovery

Granule Size Testing Completed On June 25, 2019

Granule Size Testing Completed On June 25, 2019

32

AECOM

Festing (July 2)

Particle

AECOM

Next Steps

- Continue monitoring performance and particle size distribution of both trains through the winter of 2019/2020
- Evaluate two-stage separation Lamella + InDense Hydrocyclones
 vs. only InDense Hydrocyclones
- Conduct microbial analysis and structure of granulated sludge particles
- Stress Test the Granulated BioReactor with increased flows and loads to assess "Infrastretching" concept

DISCUSSION

