

January 29, 2020

New Directions for Sidestream Nutrient Recovery at Municipal Water Resource Recovery Facilities

Camilla Kuo-Dahab | Varun Srinivasan

Agenda

- Introduction
- Case Studies
- Emerging and Innovative Technologies
- Beneficial Use of Recovered Nutrients
- Research Trends

Introduction

Importance of Nutrient Management

Suffocated spots

Abnormal depletion in dissolved oxygen levels in oceans have increased during the past 40 years, leading to about 400 dead zones worldwide

 Eutrophic: these zones have seen a huge increase in photosynthesising plankton, which die, and the bacteria decomposing them consume oxygen, creating a shortage
Hypoxic: oxygen-depleted zones

Zones in recovery

Source: World Resources Institute

≎epa

Environmental Protection

Regulatory and Global Drivers

- Environmental pollution
 - TN and TP effluent limits
 - Some plants already have TN and TP effluent limits
 - Future TN and TP limits
 - TN and TP limits for land application of biosolids
- Growing populations and cost/demand of mineral fertilizer
 - Limited global supply of P (phosphate rock)
- Paradigm shift to a circular economy
 - Evolution of WRRF to Biorefineries

Definition and Characteristics of Sidestreams

- Flow resulting from treatment of biosolids that is returned to liquid treatment train
 - Filtrate
 - Centrate
 - Thickener filtrate
 - Digester supernatant
 - Filter backwash
- Typically intermittent flow, can be small
- Can contribute significant nutrients (N and P) loading to liquid treatment train
 - Based on influents

Why Sidestream Treatment?

- Recovers nutrients for beneficial reuse
- Reduced N and/or P to liquid treatment train
 - Less power and smaller carbon footprint
 - More stable operations
 - Lower effluent nutrient limits met
- Reduced volume or nutrient content of biosolids
- Reduced struvite formation
- Can be economical when sidestream constitutes:
 - At least 15% influent TN loading
 - At least 20% influent TP loading
 - Significant biological treatment of solids (i.e., digestion)

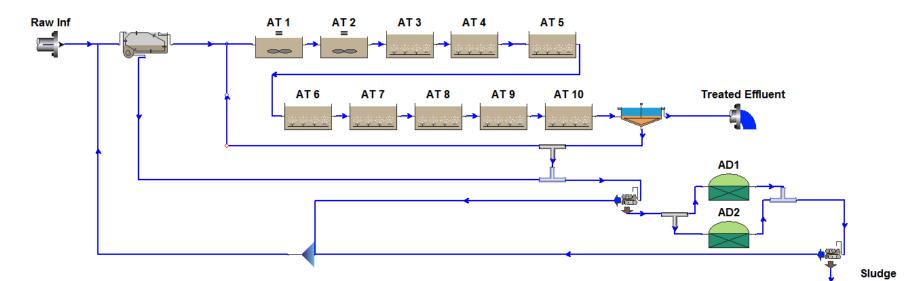
Is Sidestream Treatment Right for your Facility?

Types of Evaluations

- High-level with limited data
- High-level BioWin Modeling with limited data
- In-Depth BioWin Modeling with specified data collection
 - Wastewater characterization
 - Calibrated model
 - 3-6 months of plant operating data with analysis

- Regional biosolids processing facility
- Anaerobic digestion
- Solids:
 - Primary sludge
 - BAF sludge
 - Secondary sludge
 - Imported cake
 - SSO (food waste)
 - FOG

	Average Annual	Max 30 Day	Max 14-Day	Max 7	Max Day	
Plant I	Plant Influent					
Peaking Factors	1.00	1.26	1.40	1.50	1.69	
Influent Flow (MGD)	0.59	0.74	0.82	0.88	0.99	
Influent TKN (mg-N/L)	41	41	41	41	41	
Influent Phosphorus (mg-P/L)	10	10	10	10	10	
Plant Load (lb-N/day)	198	249	277	297	335	
Plant Load (Ib-P/day)	49	62	68	73	83	
Baseline						
Filtrate Return N Load (Ib-N/day)		1,083	1,184	1,255	1,391	
Filtrate Return P Load (lb-P/day)	47	52	57	61	68	
Filtrate Return Load- Percent of Plant N Load (%)	563%	434%	427%	423%	416%	
Filtrate Return Load- Percent of Plant P Load (%)	97%	85%	84%	83%	82%	
Regional Biosolids Processing Facility						
Filtrate Return N Load (Ib-N/day)	6,520	6,461	6,577	6,660	6,817	
Filtrate Return P Load (lb-P/day)	806	780	802	818	847	
Filtrate Return Load- Percent of Plant N Load (%)	3294%	2591%	2374%	2243%	2038%	
Filtrate Return Load- Percent of Plant P Load (%)	1650%	1267%	1172%	1115%	1026%	


	Average Annual	Max 30 Day	Max 14-Day	Max 7	Max Day	
Plant I	Plant Influent					
Peaking Factors	1.00	1.26	1.40	1.50	1.69	
Influent Flow (MGD)	0.59	0.74	0.82	0.88	0.99	
Influent TKN (mg-N/L)	41	41	41	41	41	
Influent Phosphorus (mg-P/L)	10	10	10	10	10	
Plant Load (lb-N/day)	198	249	277	297	335	
Plant Load (lb-P/day)	49	62	68	73	83	
Baseline						
Filtrate Return N Load (lb-N/day) 1,115 1,083 1,184 1,25			1,255	1,391		
Filtrate Return P Load (lb-P/day)	47	52	57	61	68	
Filtrate Return Load- Percent of Plant N Load (%)	563%	434%	427%	423%	416%	
Filtrate Return Load- Percent of Plant P Load (%)	97%	85%	84%	83%	82%	
Regional Biosolids Processing Facility						
Filtrate Return N Load (Ib-N/day)	6,520	6,461	6,577	6,660	6,817	
Filtrate Return P Load (Ib-P/day)	806	780	802	818	847	
Filtrate Return Load- Percent of Plant N Load (%)	3294%	2591%	2374%	2243%	2038%	
Filtrate Return Load- Percent of Plant P Load (%)	1650%	1267%	1172%	1115%	1026%	

- Single facility treating 36 MGD→ Regional biosolids processing facility
- Anaerobic digestion
- Wastes:
 - Primary sludge
 - Secondary sludge
 - Imported cake
 - Imported sludge
 - High strength waste

Digestion Scenarios Liquid Stream Impacts							
		Status Quo	Additional sewered waste	+ Imported Wastewater Solids	+ HSOW	+ Imported Wastewater Solids + HSOW	
Plant influent							
Flow	mgd			36			
cBOD5	mg/L			255			
TSS	mg/L			195			
TKN	mg N/L			23			
Ammonia	mg N/L	12					
Total phosphorus	mgP/L	5					
Primary effluent							
Flow	mgd	36.1	36.1	36.1	36.1	36.1	
TKN	mg N/L	20	24	24	24	24	
Ammonia	mg N/L	12	16	16	17	16	
Total Phosphorus	mgP/L	4.1	7.2	7.2	7.5	7.4	
Aeration Basins							
MLSS	mg/L	2,450	2,500	2,530	2,510	2,520	
Oxygen transfer rate	lb/hr	3,010	3,115	3,110	3,140	3,130	
Final Effluent							
Ammonia	mg N/L	0.2	0.1	0.2	0.1	0.1	
Nitrate and Nitrite	mg N/L	3	5	5	6	6	
TN	mg N/L	5	7	7	7	7	
Alkalinity	mg CaCO3/L	80	69	70	68	69	
Total phosphorus	mgP/L	0.3	2.0	1.9	2.2	2.2	

Digestion Scenarios Liquid Stream Impacts							
		Status Quo	Additional sewered waste	+ Imported Wastewater Solids	+ HSOW	+ Imported Wastewater Solids + HSOW	
Plant influent							
Flow	mgd			36			
cBOD5	mg/L			255			
TSS	mg/L			195			
TKN	mg N/L			23			
Ammonia	mg N/L	12					
Total phosphorus	mgP/L	5					
Primary effluent							
Flow	mgd	36.1	36.1	36.1	36.1	36.1	
TKN	mg N/L	20	24	24	24	24	
Ammonia	mg N/L	12	16	16	17	16	
Total Phosphorus	mgP/L	4.1	7.2	7.2	7.5	7.4	
Aeration Basins							
MLSS	mg/L	2,450	2,500	2,530	2,510	2,520	
Oxygen transfer rate	lb/hr	3,010	3,115	3,110	3,140	3,130	
Final Effluent							
Ammonia	mg N/L	0.2	0.1	0.2	0.1	0.1	
Nitrate and Nitrite	mg N/L	3	5	5	6	6	
TN	mg N/L	5	7	7	7	7	
Alkalinity	mg CaCO3/L	80	69	70	68	69	
Total phosphorus	mgP/L	0.3	2.0	1.9	2.2	2.2	

- Single facility treating 20 MGD
- Anaerobic digestion
- Solids:
 - Primary sludge
 - Secondary sludge
 - Food waste centrate

Relative Impact of added N load				
Parameters	% Changes (+/-)			
Primary Effluent N load	+4.6			
Primary Sludge Load	+1.2			
MLSS	+0.3			
Secondary Effluent NH ₄	No change			
Secondary Effluent TP	+4			
Airflow requirements	+ 7			
WAS load	+0.2			

Technologies

Treatment Technologies

Biological

Nitrification / Denitrification & Bio-augmentation

- In-Nitri
- AT#3
- BABE
- MAUREEN
- ScanDeNi

Nitritation / Denitritation

- SHARON
- Ana-Aer
- PANDA

De-ammonification

- Strass Process
- ANAMMOX
- Attached Growth (AnitaMox)
- DEMON
- CANON
- OLAND
- DeAmmon
- ELAN
- Cleargreen
- TERRAMOX

Physical-Chemical

Ammonia Stripping

- Steam
- Hot Air

Ion-Exchange

ARP Process

Struvite Precipitation

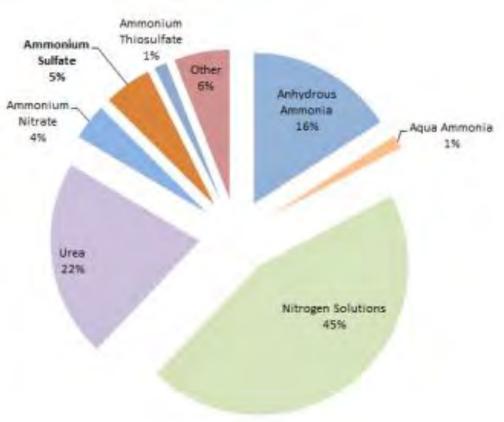
- Ostara/AirPrex Process
- MAP Processes
- Pe-Phlo System
- NuReSys Process

Emerging Processes and Technologies

- Solid-liquid separation up-front in a treatment train
 - High-rate-solid-liquid separation followed by biological treatment of ammonia in separated liquid fraction
- Quick Wash Process
 - Acidification of organic solids to release phosphate and precipitation of phosphate as calcium phosphate
- Pyrolysis and gasification processes
- Capture and recovery of gaseous ammonia (NH₃)
 - Gas-permeable membranes (GPM)
 - GPM with anaerobic digestion
- Microalgae based processes

Beneficial Use of Recovered Nutrients

Beneficial Use

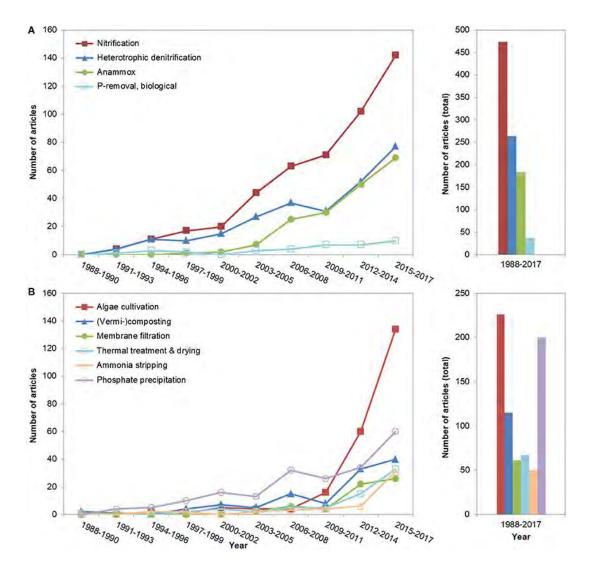

- Recovery consists on producing new material flows which subsequently can be reused (i.e., as agricultural fertilizer)
- Needs to be in a form that is acceptable by intermediary that incorporates the recovered product (i.e., fertilizer blender) or by the end user for direct application (i.e., farmer)

Uses of Recovered Products

- Fertilizer (Commercial)
 - Ammonium nitrate, sulfate, chloride, phosphates (struvite)
- Fuel Source
 - Alternative to liquid fuel
 - Contains no carbon- no GHG emissions
 - Can power diesel, spark-ignited IC engines, direct ammonia fuel cells, combustion turbines
- Emerging Products
 - Medium Chain Fatty Acids (MCFAs) that can be used in the biofuel industry

Nitrogen Fertilizer use in the US

- Aqueous solution market is the largest in the US
- Use of ammonium sulfate has been steadily growing



Data from AAPFCO, 2007

Research Trends

Research Trends

Research Needs

- Lower cost nutrient removal methods
- Better understanding of biological processes to provide more efficient and reliable designs
- Marketability of ammonium recovered products from WRRFs
- Plant operating schemes or conditions that increase economic viability of struvite crystallization and recovery processes

Thank you. Questions?

Bull Pen

- Single facility treating 2.5 MGD
- Anaerobic digestion
- Solids:
 - Wastewater solids
 - Tertiary filtration solids
 - SSO (food waste)

Estimated Nutrient Load Contribution of Food Waste to the Influent Load					
Parameter	Average annual	Maximum 30-day average			
Digester Total Soluble Ammonia ^{a, b, c, d}					
Current plant ammonia-N load, lb- N/d	362	534			
Food waste generated ammonia-N load, lb-N/d	189	189			
Digester Total Soluble P ^{c, d, e, f, g, h,i}					
Current plant P load low (lb-P/day)	8.44	N/A			
Current plant P load high (lb-P/day)	25.3	N/A			
Food waste generated P load, lb-P/d	30	N/A			

Recovered Ammonium Products

- Ammonium sulfate (AS)
 - Primary use of AS is fertilizer but no established market for AS from WRRFs
 - AS can be used in direct application or can be blended in custom fertilizer solutions
- Ammonium nitrate
 - Used extensively throughout the world, available in dry and liquid form
 - Used for explosives so strictly regulated
- Aqueous ammonia
 - Used by power plants
 - Difficult to store, health and safety risks
- Magnesium ammonium phosphate hexahydrate → Struvite
 - Recognized fertilizer for more than 150 years
 - Slow release fertilizer
 - Struvite market dominated by soluble urea-aldehyde products and polymer and sulfur products
 - Demand increasing around the world