

HOW BANGOR, MAINE WILL EXPAND A 20-YEAR OLD STORAGE FACILITY THREEFOLD ALONG A VIBRANT WATERFRONT

Kate Mignone, AECOM John Theriault, City of Bangor Engineering Department Andy Rudzinski, City of Bangor WWTP Gregory Heath, AECOM

Agenda

- -Background
- -Davis Brook Storage Tank (DBST) Design
- -Project Schedule
- -Conclusions

Background

Location Plan

Community Setting

- Located on Penobscot
 River at confluence with
 Kenduskeag River
- Older "Working" City with long history in lumber and trade
- -Population:
 - 32,569 (2014)
 - High percentage of low income and elderly

Wastewater Collection System

- Service Area: 33 Mi²
- Population Served:
 - 32,500 in Bangor
 - 8,000 in Connected Communities
- 157 Miles of Gravity Sewer
- -9 Miles of Interceptor
- -4,000 Ft. of Force Main
- 5 Pump Stations
- 8 Siphons
- 9 Permitted CSOs

Clean Water Act Compliance Milestones

30-Year History Working With EPA & ME DEP on CWA Compliance

- 1987: CD with ME DEP to begin CSO control
- 1991: CD with EPA for CSO LTCP I
- 1994: EPA accepts LTCP I
- 2009: All LTCP I projects complete
- 2012: DRAFT PHASE 2 LTCP
- 2013: Negotiation begins on new CD
- 2015: New CD finalized
- 2017: FINAL PHASE II LTCP

First LTCP Project - Davis Brook Storage Tank

- Frequency and volume of overflows at the Davis Brook CSO
- Location of the proposed DBST in the vicinity of the Waterfront
- Coordinate the DBST project with other Waterfront development plans
- Opportunity to improve hydraulics at the existing Davis Brook CSO regulator structure

Davis Brook Storage Tank Design

Design Criteria

- O.F. target: 4 per year
- Storage required: 5 MGAL
- Existing conduit: 1.2 MGAL
- Tank storage: 3.8 MGAL
- TOTAL SYSTEM: 5.0 MGAL

New Regulator Structure

- Under construction
 - Separate contract from DBST
- Increases dry weather connection size
 - 30 / 21 inch to 42 inch
- Provides new hydraulically actuated gates for flow control

New Regulator Structure

- Unsheeted excavation due to rock, other potential obstructions to sheet piles
- Construction suspended during summer concert season
 - To be completed winter 2020

Site Access

Connection Between Conduit and Tank

- Twin 48-inch ductile iron pipes
- Sized to meet 4 overflows per year level of control
- Installed into replacement section of conduit
 - Replacement section includes improved access to conduit
- Included two joints in each pipe to account for potential differential settlement

Siting Considerations

AECOM

AECOM

Tank Geometry and Key Features

- Length: 116 ft. Freeboard: 3.1 ft.
- Width: 242 ft. Lo
- Side water depth: 20.5
- 242 ft. Longitudinal slope: 1%
 - 20.5 ft. Gutter cross slope: 2%

Tank Dewatering

Pump Types Evaluated

- Recessed impeller
- Screw centrifugal
- Chopper

Dewatering Pump Design

- Rail-mounted submersible chopper pumps
- Three installed pumps (one per cell) plus shelf spare
- Part of automated post-event clean-up sequence
- Sized to:
 - Operate over full range of water levels in tank
 - Dewater full tank in 24 hours

Post-Event Cleaning

Options Considered

- Tipping buckets
- Flushing gates

Tipping Bucket Design

- Three tipping buckets per cell
- Part of automated post-event clean-up sequence :
 - Dewatering pumps empty each cell containing storm flow
 - Tipping buckets sequentially fill and tip
 - Dewatering pumps empty gutter and sump after each bucket tips

Tank Vent

- Capable of exhausting air during tank filling
 - Sized based on peak flow into tank
 - Styled to resemble chimney
- Admits air into tank when emptying
- May add odor control in future if warranted

Other Design Challenges

- Presence of competent rock
- Alternatives to counteract buoyancy
- Contaminated soil
- Facility start-up and acceptance testing

Bev. (ft)	Depth (ft)	Casing Pen. (bpf)	SAMPLE INFORMATION						
			Sample No.	Type	Deptin (ft)	PenJ Rec. (in)	Blow Count or RQD	Field / Lab Test Data / PID Readings	S Sample Description & Classification
			10	V	0-2	24/16	WOH-	PID-0.5 ppm	Loose, brown Sandy SILT (Fill)
15 -	-		2D	Ŷ	24	24/20	17-18- 13-11	PID=0.4 ppm	Medium dense, brown Sity SAND, trace gravel, black ash, and red brick (Fill)
10 -	5		3D	Ø	4-6	24/10	7-6-8-8	PID=0.3 ppm	4.0 Medium dense, brown Silty SAND, trace
			4D	Ŷ	6-8	24/12	7-7-5-5	PID=0.2 ppm	
			5D	Ŷ	8-10	24/10	3-7-5- 10	PID=0.3 ppm	
1.3	- 10		6D	X	10-12	24/8	11-9-8-	PID=0.3 ppm	10.0 Medium dense, brown Silty SAND and GRAVEL, trace black ash (Fill)
5 -	ţ.		70	Ŕ	12-14	24/6	12-9-	PID=0.3 ppm	
1	- 15		8D	Ŕ	14-16	24/12	7-4-2-1	PID=0.3 ppm	14.0 Loose, brown Silty SAND, trace gravel (Fill)
0 -	Ē		9D	Ŕ	16-18	24/12	2-15- 16-15	PID-0.3 ppm	5 16.5 Medium dense, brown Silty SAND and GRAVEL (Fill)
	- 20			X			5		Medium dense, GRAVEL, trace sand and sit (Fill)
-5-			100	X	21-23	24/4	18-12- 10-8		000
-	- 25		11D	X	24.5- 26.5	24/6	10-7-2- 20	PID=0.3 ppm	Medium dense to loose, brown Sandy SILT and GRAVEL with, trace wood (Fill)
-10 -	÷							10.3	Conse, brown Silty GRAVEL and SAND (Glacial Till)
-15 -	- 30		12D	X	30-31.1	13/6	9-31- 50/1*	PID=0.2 ppm w =10.5 %	31.2 Probable BEDROCK
	- 35								
20					1000	1.11			

Existing Site

Future Site

Project Schedule and Conclusions

Project Schedule

2019				20	20		2021				2022			
Q3	Q4	Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Complete DBST Design / Advertise for Bids	Begin DBST Construction		Complete CSO Regulator Construction									Complete DBSC Construction	СОМ

Conclusions and Take-Aways

- Importance of designing CSO facilities for future expansion
- Innovative approach for expanding CSO storage with integrated storage solution
- Collaboration within City to meet needs of CSO control and future waterfront expansion

Questions

AECOM Imagine it. Delivered.

·12.1月日: