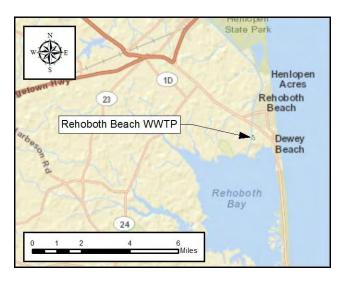


Mitigating Nutrient Impacts on a Stressed Watershed Through Construction of a New Ocean Outfall

Anastasia Rudenko | GHD Lenna Quackenbush | GHD

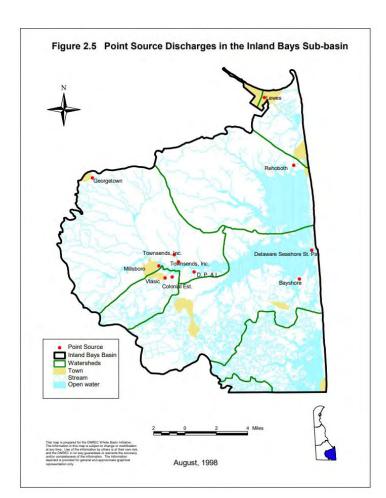
NEWEA 2020

Session overview


- Background
- Planning
- 3 Design
- 4 Construction

Background

Rehoboth Beach, Delaware


- Seasonal community
- Winter population under 1,500
- Summer population peaks around 25,000
- Over 100,000 beach visitors on any given day in the peak season

Rehoboth Beach Wastewater Treatment Plant History

- 1989 Constructed
 - Original discharge to the Lewes-Rehoboth Canal
 - Empties into Inland Bay
- 1990's Upgraded for Biological Nutrient Removal (N and P)
- 1996 Listed as "water quality impaired"
 - Nitrogen and Phosphorus Impacts
- 1998 TMDL issued
 - Requiring "all point source discharges and their tributaries to be eliminated systematically"
- 2002 Consent Order and Revised
 Discharge Permit required discharge to
 be eliminated from Inland Bay

Planning

Alternatives Considered

Alternative 1: No Action

Alternative 2: Nutrient Trading

Alternative 3: Land Application

Alternative 4: Rapid Infiltration Beds (RIBs)

Alternative 5: Ground Water Injection

Alternative 6: Ocean Outfall

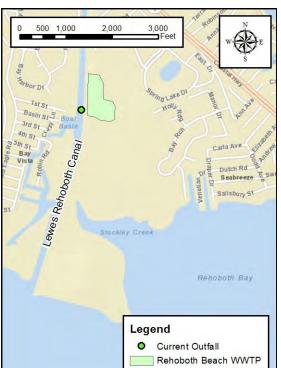
Alternatives Not Carried forward

Alternative 2: Nutrient Trading

 Only allowable if no other options are technically or economically feasible (Consent Order)

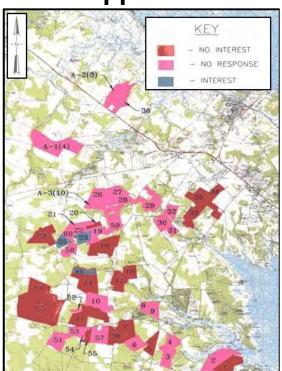
Alternative 4: Rapid Infiltration Beds

- Land not available
- Potential to contribute nutrients through groundwater migration
- Potential for groundwater mounding


Alternative 5: Ground Water Injection

- Shallow
 - Potential to contribute nutrients through groundwater migration
- Deep
 - Excessive risk and cost
 - No qualified local contractor

Alternatives Considered in Environmental Impact Statement (EIS)


Alternative 1:

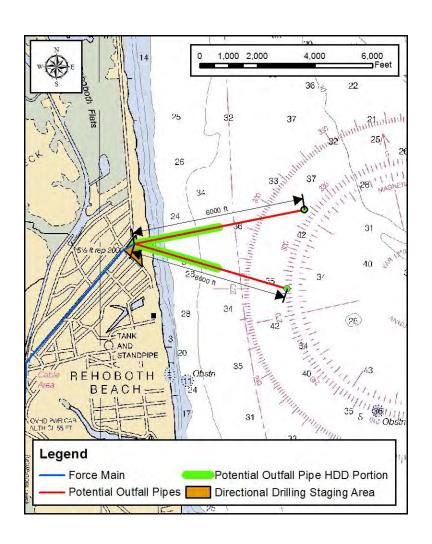
No Action

Alternative 3:

Land Application

Alternative 6:

Ocean Outfall


Ocean Outfall

Proposed Ocean Outfall

- Two locations investigated
- 24-inch diameter pipe extending 6,000 linear feet from the Deauville Beach access parking lot
- Terminates with diffuser

Construction Methods

- 3,000 feet or more of pipe will be directionally drilled
- Directional drilling maximized to minimize environmental impact
- Remainder open cut excavation

Force Main

Proposed Force Main Alignment

- Force Main Alignment Study completed in December 2011
- 11,400 linear feet long, 24-inch diameter
- Will predominately follow existing utilities and right of ways

Construction Methods

- 9,150 linear feet open cut
- 2,250 linear feet near Grove Park directionally drilled

Field Studies

Soil borings

- 1500, 3000, 4500 and 6000 feet from shore
- Each drilled to a depth of 80 ft
- High probability that HDD portion could extend beyond 3,000 feet

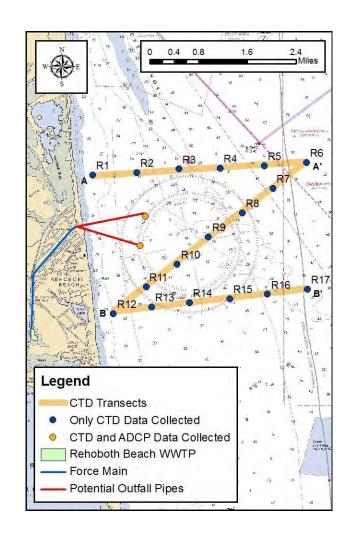
Archaeological Survey

- Magnetometer and side-scan sonar
- Most anomalies suggest debris or buoys
- Several potential targets but not near northern outfall

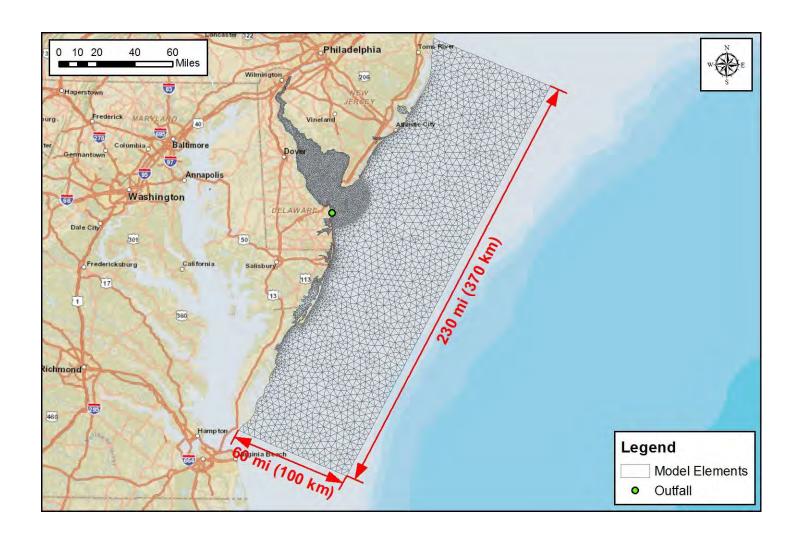
Physical Oceanography

Acoustic Doppler Current Profiler (ADCP) & Fixed Conductivity, temperature, density (CTD) buoys

- Deployed at each outfall location for two 2month periods
 - 9/2/2010 to 11/9/2010
 - 7/6/2011 to 9/12/2011
- ADCP Data recorded at 1.6 ft (0.5 m) increments
 - Current speed & direction every 10 min
 - Wave height every 60 min
- CTD data recorded at three or four different depths every 10 minutes

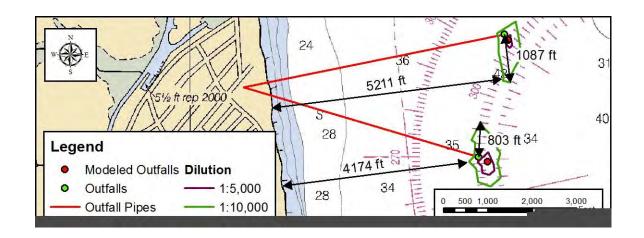


Physical Oceanography


CTD Cruises

- Conductivity, temperature, density, and salinity measured at multiple locations
- Recorded at approximately 1 ft depth increments from ocean surface to ocean floor

CTD Cruise #	Date
CTD Cruise #1	Nov. 18, 2010
CTD Cruise #2	Jan. 25, 2011
CTD Cruise #3	March 17, 2011
CTD Cruise #4	May 25, 2011
CTD Cruise #5	July 11, 2011
CTD Cruise #6	Sept. 14, 2011



Far Field Model - Modeling Domain

Far Field Modeling Results

- Modelling indicated required effluent dilution ratios met for:
 - Typical operations
 - Worst case scenario (plant upset)

Environmental Consequences

- Physical Environment (Chapter 7 of EIS)
- Biological Environment (Chapter 8)
- Human Health Environment (Chapter 9)
- Cumulative Impacts (Chapter 10)

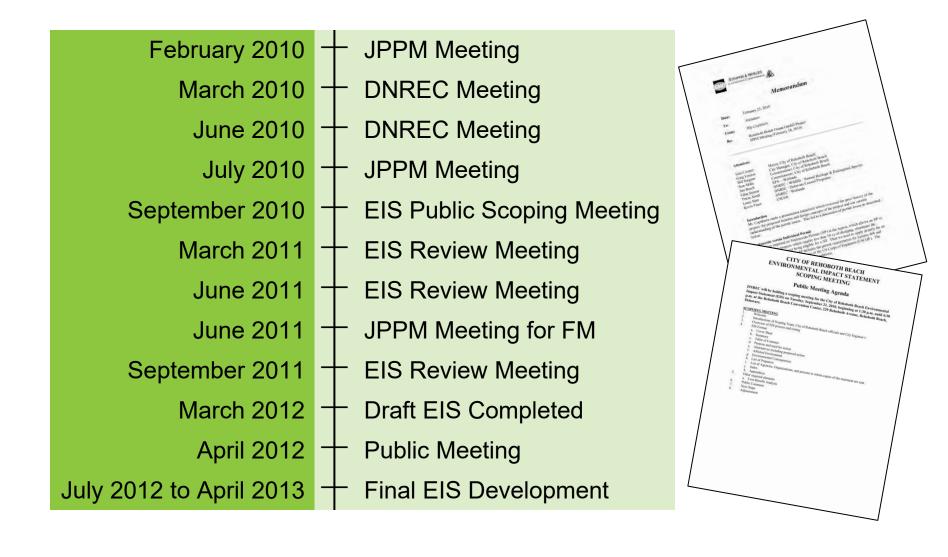
Rehoboth Beach EIS

Concluding Remarks

- Both land application and ocean outfall are protective of human health and the physical and biological environment under all conditions
- Environmental Impacts, where present, are temporary and can be mitigated
- Preferred alternative is the ocean outfall

Environmental Impact Statement - Review Agencies

- City of Rehoboth Beach
- Delaware Department of Natural Resources and Environmental Control (DNREC)
- US EPA
- US Army Corps of Engineers
- Sussex County
- Coast Guard
- Concerned Citizens

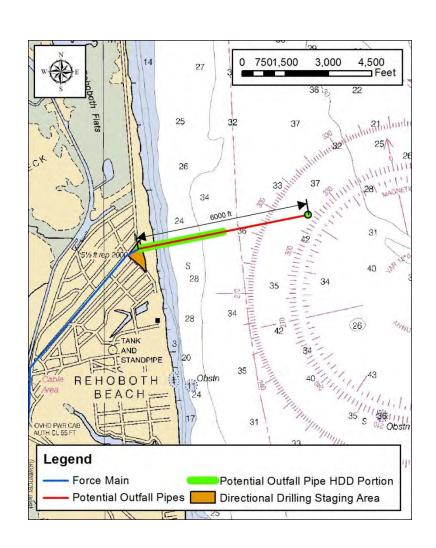


Birth and Development of the EIS

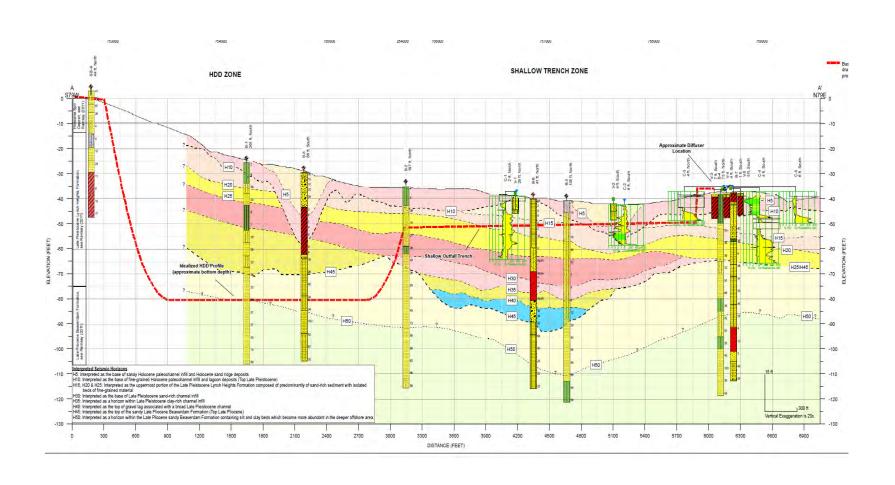
Design

Ocean Outfall Design and Construction

- The Ocean Outfall was one of 3 projects occurring simultaneously.
- Forcemain: 24" PVC Treated Effluent Force Main, including a section of Jack and Bore under Rehoboth Avenue, with a total length of 11,300 linear feet.
- Effluent Pumpstation with 4 vertical turbine pumps through the forcemain and outfall.
- All three projects need to be completed by June 1, 2018 per Consent Order from DNREC

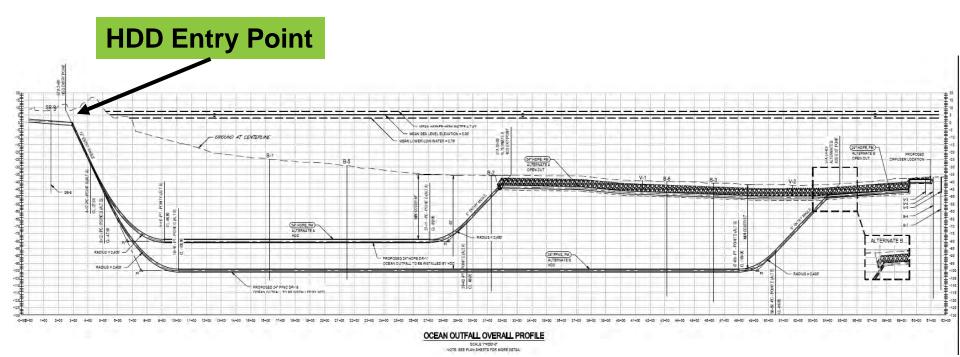

Design-Ocean Outfall

Proposed Ocean Outfall


- 24-inch diameter pipe extending
 6,000 linear feet from the Deauville
 Beach access parking lot
- Terminates with diffuser

Construction Methods

- 3,000 feet or more of pipe will be directionally drilled
- Directional drilling maximized to minimize environmental impact
- Remainder open cut excavation


Ocean outfall design considerations - site characterization profile

Ocean Outfall Profile

Bid alternatives

- 2,971 LF of 24" HDPE pipe and 2,641 LF marine plowed trench
- 5,612 LF of FPVC exiting near diffuser outlet

Construction

Ocean outfall construction timeline & costs

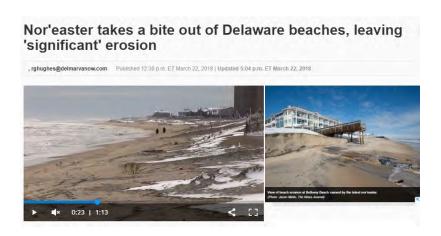
Permits and schedule

 Construction was constrained to Fall, Winter and Spring (7 month construction period)

Ocean Outfall Construction Cost

• \$28.1 M

Significant Days	Date
Notice to Proceed	9/5/2017
USACE Window Expiration	2/28/2018
DNREC Window Expiration	3/15/2018
Marine Work Completion	3/31/2018
Project Completion	4/30/2018



Weather Impacts

- Construction was initially constrained to Monday to Friday, 7:00 AM to 6:00 PM
- Working hours were changed to 7 days per week, 24 hours per day to meet schedule

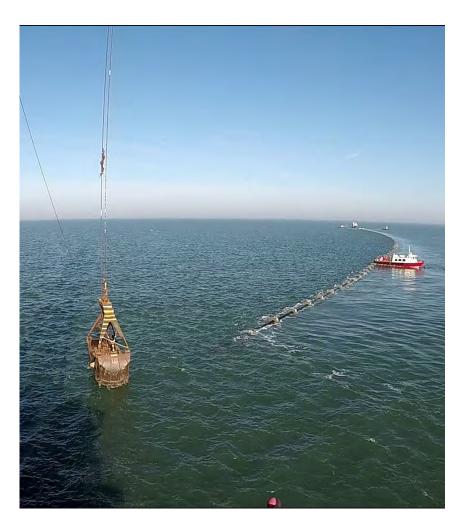
Contractor Staging

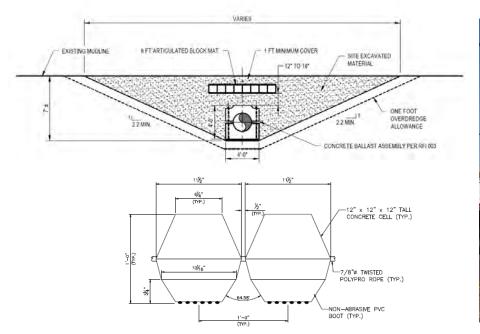
Horizontal Drilling at Deauville Beach

Offshore Staging at Cape Henlopen

HDD Installation

- Pilot hole advanced from land to reduce offshore equipment support
- Outfall pipe pulled from ocean to shore
- Pullback took ~ 24 hours




Ocean Outfall Cross-section - Open Cut

ACB Mat

Articulated precast concrete mat to protect pipe

ACB Mat Placement

Diffuser Placement

Precast grade beam for diffuser support

Diffuser Placement

General lessons learned

- The weather is the number one enemy for an offshore project.
- Make allowance for adequate number of weather delay days in the contract.
- Be flexible with working hours
- Always be aware of unforeseen conditions.

Summary

- Ocean outfall can be a feasible alternative for watershed nutrient management
 - Relatively small land area required
 - Effluent discharge occurs outside impacted watershed, greatly reducing nitrogen loading impacts to coastal estuaries
- Hydrodynamic modelling required to determine effluent nutrient load fate
- Extensive permitting period anticipated
- Extensive public outreach / participation critical for a successful project

