

SSI COMPLIANCE PROJECT MANCHESTER, NH WWTP

Robert J. Robinson, P.E. Gillian Wood, P.E. – Woodard & Curran, Inc.

Agenda

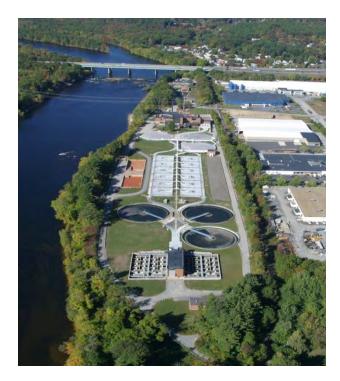
- Manchester Background
- A History of Incineration at Manchester
- Benefits of Incineration
- 40 CFR Part 62 Subpart LLL
- Engineer Selection
- Design Criteria and Options Evaluation
- Selection of the Mercury Control System
- Achieving Compliance
- Stack Test Results
- The Project
- Stack Testing Platform
- Lessons Learned and Key Takeaways
- Questions

1	AGE	NDA
V		
Ē	1	
V	-	
	-	
	A	

Background – City of Manchester

- Largest City North of Boston 110,000 population
- Settled in 1725
- Evolved from Agricultural to Industrial: 1725 - 1815
- Amoskeag Mills: Largest single mill in the world 1915
- Post Industrial Depression: 1935 1980's
- Revitalization: 1990 to Present

Environmental Protection Division


- Created in 1975
- Division of Manchester's Department of Public Works
- An "enterprise"
- Staff of 43
- 15 acre campus at 300 Winston Street
- 10 buildings
 - Administration
 - Operations
 - Maintenance

Manchester's Wastewater Infrastructure – WWTP

- 1975 26 mgd
- 1994 Upgrade to 34 mgd
- 2016 Upgrade to 42 mgd
- Serves four communities
 - Bedford (4.37%)
 - Goffstown (4.11%)
 - Londonderry (10.16%)
 - Manchester (81.36%)
- Metro pop. 172,000

A History of Incineration at Manchester

Multiple Hearth Incinerator (MHI) – Installed 1975

MHI Second Floor EL 155.83

Multiple Hearth Incinerator (MHI) - Today

Fluidized Bed Incinerator (FBI) – Installed 1993

Fluidized Bed Incinerator Upgrade

MANC

ENT OF PUBL

- Project Completed 2011
- Project Cost \$4.5 Million
- Project Description
 - Rebuilt the Incinerator
 - Replaced 75% of the vessel's shell
 - New brick interior lining
 - New tuyere system
 - Inlet manifold
 - Heat exchanger

Benefits of Incineration

- 95% Reduction of Biosolids
- Heat Recovery supplements plant hot water demands
- Beneficial Use of Ash

Beneficial Use of Ash

Hot Water Storage

- 4,000 Gallons of Hot Water Storage
 - The Economizer (air to water heat exchanger) from the Fluidized Bed Incinerator converts hot air to hot water.
 - The hot water was once only used as it was produced. With these tanks we are able to capture and retain 4,000 gallons to be used later.

40 CFR Part 62 Subpart LLL

- Applicability
- Timing Promulgation
- Compliance Deadline March 21, 2016
- Established new permit limits for constituents
 - PM, HCI, CO, Dioxins/Furans, Hg, NO_x, SO₂, Cd, Pb, Fugitive Emissions from Ash Handling
- Manchester performance relative to LLL
 - Hg & SO₂

Engineer Selection

- Successful installation of mercury control system at other Sewage Sludge Incineration Facilities
- Working Relationship with EPA Region 1

OF MAN

ENVINE PROTECTION DIVISION DIVISION

Design Criteria & Options Evaluation

• 2015 Stack Test Results

Pollutant	Measured Average	Subpart LLL Limit
Sulfur Dioxide (ppm)	24.5	15
Mercury (mg/DSCM)	0.073	0.037

Evaluation of Historical Sludge Data

Statistical Significants	Hg Concentration (mg/DSCM)
Arithmetic Mean	0.050
95 th Percentile	0.117
99.7 th Percentile	0.151

Design Criteria & Options Evaluation

- Non-Incineration Alternatives Analysis
 - While viable, not cost effective given the age and condition of the incinerator
- Fixed Bed Activated Carbon Treatment
 - Potential to achieve greatest removal efficiency
 - Physical space requirements
 - Maintenance requirements of additional equipment (preheat & filtration)
 - Prone to fouling under upset conditions/intermittent operation
- SPC System
 - Relatively small footprint
 - High cost of replacement media
 - More tolerant of intermittent operation

Selection of Mercury Control System

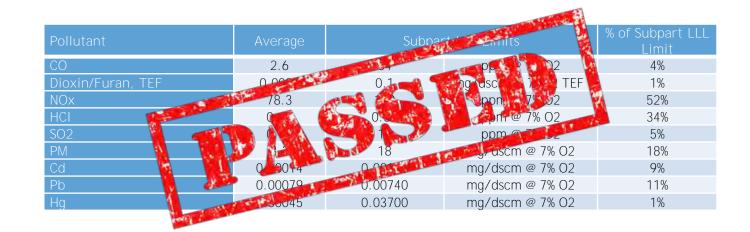
- 10-year NPV Analysis
 - Fixed Bed Activated Carbon System \$4.58 \$4.78M
 - SPC System \$4.07 \$4.99M
- EnviroCare References (other systems in operation)
- Systems of Comparable Size to Manchester
- Site Visit to North Carolina System and Plant Feedback

Achieving Compliance

- Terms of the Consent Decree
 - Design, Install, Operate a Mercury Control System
 - Commence Operation of the Mercury Control System No Later Than July 11, 2019
 - Interim Period Compliance
 - Mercury Control System in Place
 - Ongoing Compliance requires parametric monitoring as defined by the Control Plan and SSMP

Interim Compliance Period

- Achieving compliance with all pollutants except Hg
 - Control Plan & Site Specific Monitoring Plan
 - Establish Initial Operating Limits
 - Operating Limits serves as surrogates and deviations reported semi-annually
 - Annual Compliance Testing
 - Implement Interim Mercury Management Plan
 - Increased Sludge Sampling
 - Increased Sampling at the Plant and at Metering Stations
 - Dental Office Outreach
 - Industrial Sampling



Mercury Control System in Place

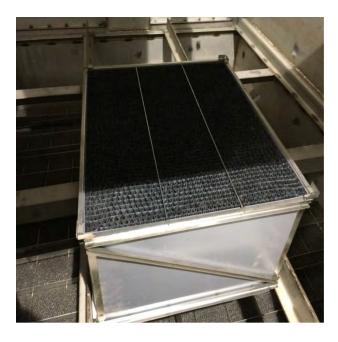
- Updates to all documents to include the Mercury Control System
 - Control Plan & Petition
 - Site Specific Monitoring Plan to include Hg Monitoring
- Stack Test to Demonstrate Compliance
 - Stack Testing @ 85% of permitted capacity
- Establish New Operating Limits
- Compliance Testing (frequency based on limits achieved)
- Complexity lies in the dynamic nature of the system and monitoring the parameters on an ongoing basis

Stack Test Results

SSI Compliance Project

- Project Completed 2019
- Project Cost \$8.0 Million
- Project Description
 - Installation of mercury removal vessel, new economizer, and recuperator base
 - Added removal of two multiple hearth incinerators
 - Added installation of two
 new scum tanks

Mercury Removal Unit



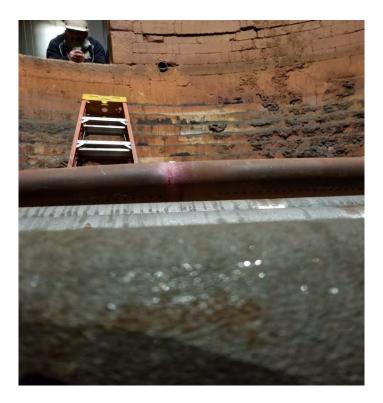
Mercury Removal Unit

- EnviroCare MercuryPak Scrubber
 - Sorbent Polymer Composite (SPC)
 - 81 Modules
 - 9 Layers of 9 Modules in each Layer
 - Size: 13"x25"x27"
 - Weight 72 Pounds Dry

Tuyere Replacement

• FBI Tuyeres

- 12 Tuyeres in the Vessel
- To fluidize the air
- 4 Replaced initially
- 3 Additionally replaced



Tuyere Replacement

OF MANCA

ENVIRONMENTAL PROTECTION DIVISION

Economizer Replacement

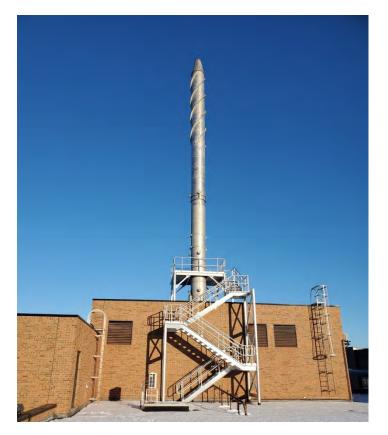
 New Economizer
 The Air to Water Heat Exchanger

Recuperator Base Replacement

• New Recuperator Base

- The rest of the unit remained
- Had issues fluidizing
- Replacing some expansion joints
- Replace the center section?

Recuperator Expansion Joint Replacement



Stack Sampling Platform

Lessons Learned & Key Takeaways

- 1. Replace equipment in its entirety
- 2. The documentation can be cumbersome
- 3. Operating limits change each year
- 4. 85%+ Throughput is tough to achieve
- 5. The stack sampling platform was the best money spent
- 6. Plan for "Murphy's Law"
- 7. Have a good backup plan
- 8. Plan for life after incineration

Acknowledgements

Thank You...

