Applicability of a Risk Based Framework for Permitting Decentralized Non-Potable Water Systems in New England

Leading the country in onsite water treatment and reuse solutions

Presented to NEWEA Annual Conference & Exhibit, Boston Massachusetts

Presented by Bruce Douglas, PE

Coauthors: Adam Stern, PE; Zach Gallagher, PE; & Ed Clerico, PE; and Sheng Chu, PE PhD

January 28, 2020

Outline

- > Why Do We Need to Reuse Water?
- > Onsite Reuse in New England
- WERF's Risk-Based Framework
- > Example Application of Framework

Questions & Answers

Key Takeaways

- 1. Risk-based Framework for DNWR is a wholistic approach to DNWR Management
- 2. Implementation of a Risk-based Framework increases public health protection
- 3. Risk-based Framework can be readily incorporated into existing or new regulatory programs

Locations of Representative Decentralized and Municipal Non-Potable Reuse in New England

Legend:

Municipal Reuse

🗙 Reuse Pilot

Making a Difference & Tackling Our Water Challenges Together

Sustainability, Resiliency & Resource Recovery

Aging &/or Inadequate Infrastructure

Rising Costs

Drought Conditions in Massachusetts

https://www.mass.gov/service-details/past-drought-declarations-maps-and-history

Drought Conditions in Massachusetts

Sustainable Urban Water Management

Source: Moglia, M & Cook, S.; 2019; Transformative Approaches for Sustainable Water Management in the Urban Century; *Water* 11, 1106; doi:10.3390/w11051106

Typical Blackwater Reuse in Unsewered Area

Typical Blackwater Reuse in a Sewered Area

Massachusetts Reclaimed Water Permit Program (314 CMR 20)

Allowed Uses for Class A Water in MA

Irrigation

Cooling Water

Toilet and Urinal Flushing***

Agricultural Use

Industrial Process Water

Commercial Laundries and Carwashes

Snowmaking

Fire Protection

Creation of Wetlands & Recreational Impoundments

*** Excluding Single Family Homes, townhouses, and 2 & 3 family houses, where residents may have access to plumbing for repair or modification.

Example of Massachusetts Reclaimed Water Quality Requirements

Parameter	Class A Requirements				
рН	6.5 – 8.5				
Biochemical Oxygen Demand (5 day)	<10 mg/L				
Total Suspended Solids	<5 mg/L				
Total Nitrogen	<10 mg/L				
Turbidity	2 NTU*				
Fecal Coliform	Not Detectable**				
Other Parameters specified by the DEP	To be determined				

Notes:

* Less than average of 2 NTU within a 24-hour period, cannot exceed 5 NTU more than 5% of the time with a 24 hour period, and cannot exceed 10 NTU at any time.

**Median of no detectable fecal coliform/100 ml over continuous seven-day sampling periods, not to exceed 14 /100 ml in any one sample

Regulatory Initiatives: Public Health Protection through Advocacy. Creating and Guiding Regulatory Changes in Water Across The Country

Risk-Based approach to Public Health Protection for Non-Potable Water Systems

Traditional Reuse Process Performance Monitoring

Daily Fecal Indicator Organisms (FIOs)

- "FIOs may not be present in potential source water for a nonpotable system.
- FIOs are not necessarily representative of all pathogen groups.
- Grab samples analyzed for FIOs cannot be used for continuous monitoring.
- FIOs are more difficult to measure consistently than other surrogate parameters."

Source: WERF (2017) Risk-Based Framework for DNW Systems, page 49

Risk Base Framework Focuses on:

- Performance-based log₁₀ reduction targets (LRTs) for the treatment of pathogens.
- Design to achieve the LRTs.
- Consistent management and monitoring practices.
- Consistent permitting and reporting practices.

Source: WERF (2017) Risk-Based Framework for DNW Systems, page ix.

Pathogen Concentration Reduction Using Base Ten (10) Logarithms

2 logs : 10⁻² or 99% removal

3 logs: 10⁻³ or 99.9% removal

4 logs: 10⁻⁴ or 99.99% removal

Performance-based treatment log₁₀ reduction targets (LRTs)

- Use surrogates (to address viral, bacterial, and protozoan pathogens)
- Are based on the source water and non-potable end uses for those source waters
- Provide a risk benchmark that we accept for both drinking and recreational waters (i.e., a tolerable risk from one infection per 10,000 and one infection per 100 people per year, respectively).

Source: WERF (2017) Risk-Based Framework for DNW Systems

Performance-based treatment log₁₀ reduction targets (LRTs)

- Use surrogates (to address viral, bacterial, and protozoan pathogens)
- Are based on the source water and non-potable end uses for those source waters
- Provide a risk benchmark that we accept for both drinking and recreational waters (i.e., a tolerable risk from one infection per 10,000 and one infection per 100 people per year, respectively).

Source: WERF (2017) Risk-Based Framework for DNW Systems

Performance-based treatment log₁₀ reduction targets (LRTs)

- Use surrogates (to address viral, bacterial, and protozoan pathogens)
- Are based on the source water and non-potable end uses for those source waters
- Provide a risk benchmark that we accept for both drinking and recreational waters (i.e., a tolerable risk from one infection per 10,000 and one infection per 100 people per year, respectively).

Source: WERF (2017) Risk-Based Framework for DNW Systems

Possible Reference Pathogens

Pathogen Group	<i>Domestic Wastewater</i>	Graywater	Stormwater	Roof Runoff
Enteric Viruses	\checkmark	\checkmark	\checkmark	
Enteric Bacteria	\checkmark	\checkmark	\checkmark	\checkmark
Parasitic Protozoa	\checkmark	\checkmark	\checkmark	\checkmark

Source: WERF (2017) Risk-Based Framework for DNW Systems Table 3.2

Risk-Based Design Also Incorporates

- □ Fit for Purpose Water
- Multiple Barrier Design
- □Log₁₀ Reduction Values for Unit Processes

Examples of Process Design and Control Features to Enhance the Reliability of a Water System and Applicable Management Category

Feature	Benefit
Alarm systems	Immediate notification of operator
Backup dispersal or discharge system	Redundancy of discharge capacity
Equalization of flows	Process stability and maximize non-potable water use
Fail-safe mechanisms	Automatic shutdown of a process or diversion of flow
Make-up water systems	Automatic addition of water from back-up supply

Excerpted from WERF (2017) Risk-Based Framework for DNW Systems, Table 2-4

Selected Observed Values for Various Levels of the Inactivation of Enteric Bacteria in Filtered Secondary Effluent with Selected Disinfection Processes

Dose for Corresponding Log10 Reduction Value

Disinfection	Unit ^A	1 Log ₁₀	2 Log ₁₀	3 Log ₁₀	4 Log ₁₀
Free Chlorine	mg•min/L	0.4 - 0.6	0.8 – 1.2	1.2 – 1.8	1.6 – 2.4
Ozone	mg•min/L	0.005 – 0.01	0.01 - 0.02	0.02 - 0.03	0.03 – 0.04
Ultraviolet Radiation	mJ/cm ²	10 – 15	20 – 30	30 – 45	40 - 60

^AAbbreviations:

- \rightarrow mg•min/L = Milligram-minutes per liter.
- \rightarrow mJ/cm² = Millijoules per square centimeter

Source: 2017; Risk-Based Framework for DNW Systems; Table 4.5

Example Treatment Process Log₁₀ Reduction Credit Examples

Treatment Process	Log ₁₀ Reduction Credits (Virus/Protozoa/Bacteria)
Microfiltration or Ultrafiltration	0/4/0
Membrane Bioreactor	1.5/2/4
Reverse Osmosis	Up to 2/2/2
Ultraviolet Light Disinfection	Up to 6/6/6
Chlorine Disinfection	Up to 5/0/5
Ozone Disinfection	Up to 4/3/0

*Source: Adapted from Table 3 in Blue Ribbon Commission, 2017, A Guidebook for Developing and Implementing Regulations for Onsite Non-potable Water Systems – See source for complete table, comments and notes.

Log₁₀ Reduction Example - Groundwater Discharge System

Log₁₀ Reduction Example - Enhanced Ozone and UV system

Performance Monitoring & Controls

Management, Monitoring & Reporting Considerations

Management	Monitoring	Reporting
Validation & Control	Field Verification	Data
Automation	Continuous Verification	Compliance
Feedback Loops	Alarms	

Unit Process	Critical Control Point Examples
Membrane bioreactor	Trans-membrane pressure; flow rate; & turbidity
Ozone	Oxidation-reduction potential (ORP)
Ultraviolet Disinfection	UV transmittance

Source: Table 6-4:

How We Do It – Secure Remote Access = Efficient Operation, Maintenance and Asset Management

• (AA	DANIS CHE I THE						10.00	and the second			2 - 0
C	@ ser/uperstord	Hotelog-La	_		_		_		_	_	R.F.
-	Work			/							104
9	Order	S /				_/					***
ey Stuff	f Work Orders	PMs Assets	Empi	nytes Cust	omers S	pot Buys	Documents	Reports Settings O	antact Us Wha	r's New Logout	
e (di	COT Relat	feelick Rist-	igal (ente ene	Nép					Manage	Work Ord
	Wo	k Order List			-	View	Work Order	-	_	Ouerv	-
	NU	K OTUET LISU		Li	sting 0-0p	en Operati	ions Northeast	Work Orders.		Query	
¥0#	Reported Area	Client PO #		q Priority	Statu	(603 m) s Type	Asset #	Title	Costact	Address	Assignment
7 5218	Sep 23, 2016 Natur	R)	Sep 28	2-High	0-Open	Car		Locate Cleanout at 10 Woodland Terrance, Bloomshur	Tim Baser	29 Faun Rin Drive	
5216	Sep 22, NAM	R.	Sep 78	2-High	0-Open	Cor.		Locate Cleanout at 18 Cobblestone Ct.	Karl Weber	27 Waters Edge	
5211	Sep 22, 205 Labiret			3-Nerral	3-Open	Car		MIP Pump Seal Likelik	Karl Haber	4) Potesh Road	Giyané
5,207	Sep 21, NJAN 8 2005	5		21030	/b-Open	Ça.		Calibrate endress and hasser micarder	Jin Bauer	4 Stevens Lane	Mchaei N.Rm C
5214	Sep 20, Conten 2006			2-High	0-Open	Ret		Pick up balcat from Exercises	Dennis Kente	139 Rocky Point Road	Loup
5203	Sep 20, Concret 2006			24658	0-Open	Neiz.		Pick up Excevator from Concerns	Dannis Koele	139 Rocky Point Road	Lay P
5196	Sep 20, Arams 2016			0-Imergency	0-Open	Compl		Daily Flow Reading	Katl Weber	S Thornton Road	
7 5095	580 20, TNSE: 2006			3-Normal	0-Open	(a		Membrane Aulu Air Scou Valves	Brian Deisensch	900 Lamitigton Road	tau P
75194	Sep 20, THSE. 2006			3-Normal	0-Open	Car	01268 TN PLC	Equipment Run Hours	Brian Deiserrith	900 Lamington Road	Nichael M
	Sep 20. mar			-		-		Install a low air flow	Dis Dilance	900 Lamington	

Programmable Logic Control (PLC) & Supervisory Control and Data Acquisition (SCADA)

Computerized Maintenance Management System (CMMS)

Proposed Framework

Permit Application & Report Submission

Construction & Commissioning

Operational Monitoring

Reporting

Adapted rom Figure ES-1

Questions?

Bruce Douglas New England Vice President

bdougas@nsuwater.com 802.999.6797

