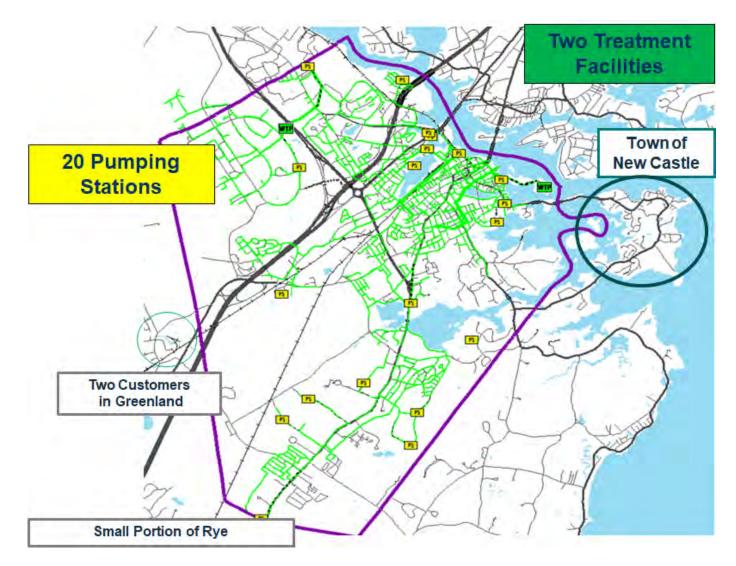
Taking a Global Look Citywide Pump Station Assessment

City of Portsmouth, NH

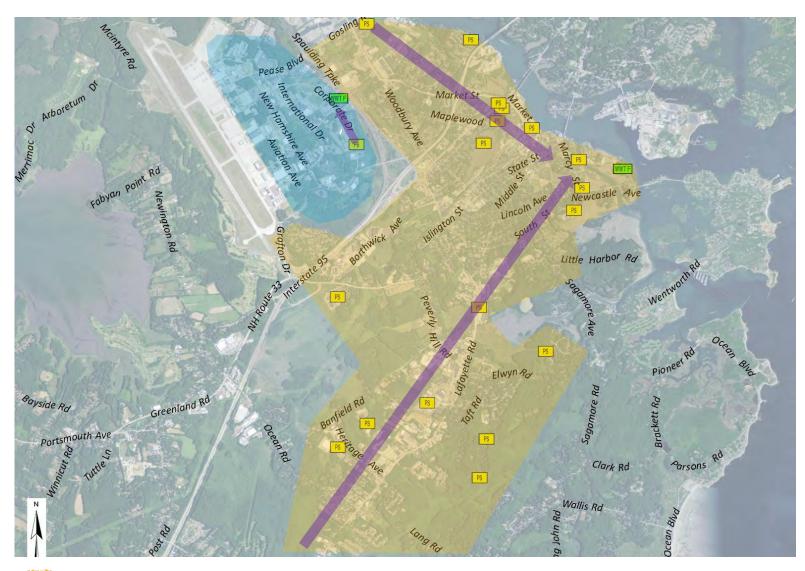
January 28, 2020

Terry L. Desmarais, Jr., PE Michael R. Theriault, PE

WRIGHT-PIERCE *Engineering a Better Environment*

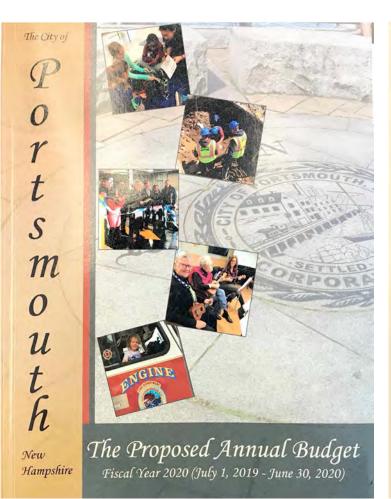

Presentation Overview

Background Project Goals Approach Results Next Steps



Background: City of Portsmouth

- Coastal community
- Population 22,000
- Regional wastewater treatment
- Peirce Island WWTF
 - 6.13 MGD ADF, Biological Aerated Filter
 - 。 22.0 MGD Peak Wet Weather
- Pease WWTF
 - 1.2 MGD ADF, Sequencing Batch Reactor
- 20 pump stations
- ~110 miles gravity sewer
- ~9 miles force main
- 3 combined sewer overflows


Background: City of Portsmouth

Project Goals

Capital Improvement Plan

FY 2019 - FY 2024

City of Portsmouth, New Hampshire

- Comprehensive planning document
 - Annual budget
 - City's 6-Year Capital Improvement Plan
- Master Plan
 - Implementation Tool
 - Living Document
 - Reference Document

Project Goals

"First" Comprehensive Condition Assessment

- Facilities
- MEP
- Pumping Equipment
- Instrumentation and Controls
- Codes
 - Building
 - Electrical
 - NFPA
 - DES
- Flood Resiliency

Project Goals

- Design vs Actual vs Potential Flow Needs
 - Buildout Projections and Land Use
 - Over/Under-Sized Pump Stations
 - Extraneous Flow and Combined System Influence on Pump Operation and Capacity
- Benchmark Condition and Performance
 - Facilities and Pumping Equipment
 - Efficiency
 - Energy use
- Integration with NH DES Energy Study
- Potential Integration For Future Asset Management Approach

Approach

Annual Pump St 2013 As designed by As proposed by As specified in the project sponsors the senior analyst the project request ssballs.com/tr - from Busine Swing graphic by S Høgh 1993 As produced by As installed at What the user 2014 2015 2016 the programmers the user's site wanted

aluation n criticality

Approach: High Priority Stations

Engineering a Better Environment

- Critical large stations
- Wet-weather
 - Mechanic St up to 22 MGD
 - Deer St up to 12 MGD
- Key mid-sized stations
 - Gosling Rd
 - Leslie Dr
 - Rye Line
- Individualized physical evaluations
- Scheduled upgrades
 - Heritage Ave
 - Lafayette Rd

9

Approach: Medium Priority Stations

Engineering a Better Environment

- Suction lift stations
- 130-400 GPM
- 16-37 years old
- Limited physical evaluation
- Group 'like stations' together
 - Age
 - Original construction contract
 - Physical configurations
- Assumptions, desktop analysis for some

Approach: Low Priority Stations

- Small stations
- < 100 GPM
- 5-13 years old
- Limited physical evaluation
- Assumptions, desktop analysis for some

Approach: Project Engineers

WRIGHT-PIERCE

Engineering a Better Environment

- Visit all pump station sites
- Collaborate with City staff
 - History
 - Upgrades
 - Issues
- Maintenance
- Understand service area
 - Future growth, buildout
 - Commercial, Industrial connections
- Inventory all equipment
- Preferences for potential upgrades
- Drawdown testing

12

Approach: Supporting Engineers

WRIGHT-PIERCE

Engineering a Better Environment

- Architects, Structural, Mechanical HVAC, Electrical, Instrumentation
- Site visits: Economical and cost effective approach
 - Led by team project engineers
 - Collaboration with City staff
 - Critical and high priority stations
 - Group similar stations together
- Desktop evaluation
 - Similar stations not visited
 - Record information
 - Information gathered by project engineers

13

Approach

City of Portsmouth, New Hampshire

COASTAL RESILIENCE INITIATIVE

Climate Change Vulnerability Assessment and Adaptation Plan

This project was funded by the Gulf of Maine Council through a grant from the National Oceanic and Atmospheric Administration (NOAA).

GIS Analysis

- Coastal Resiliency: 2050 and 2100
- Zoning, buildout potential
- Service area mapping

Force Main evaluation

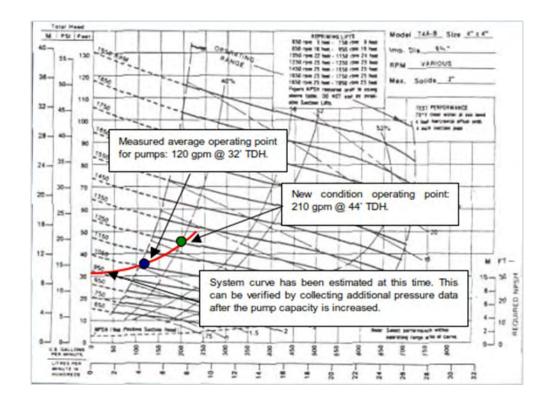
- Age
- Material, soil analysis
- Criticality
- Size, velocities as relates to pump station
- Maintenance, break history
- Recommendations for further evaluation

Approach

ENERGY EVALUATION

City of Portsmouth Pease Wastewater Treatment Facility and Collection System Pump Stations

Portsmouth, New Hampshire



Energy Evaluation

- NHDES Funding
- Energy Audit
- Wrap into the Master Plan document
- Many recommendations, City Staff projects

Asset Management

- NHDES Funding Opportunities
- Requirements parallel Master Plan scope
 - Inventory, Condition, Criticality, CIP
- Challenges: Software, Staffing

- Very well maintained, despite age
- Aging Infrastructure
 - >40 years: 3 stations, 2 pumps
 - 30-40 years: 9 stations, 16 pumps
 - 15-30 years: 5 stations, 11 pumps
- Diminishing capacity
 - 2 pumps < 50% of design flow (55 gpm)
 - 12 pumps 50-60% of design flow (55-320 gpm)
 - 4 pumps 60-70% of design flow (~400 gpm)

Immediate Replacement

- Layfette 2019
- Heritage 2020
- Mechanic TBD...\$\$\$\$\$

Replace within 5-10 years

- Constitution
- West
- Woodlands I
- Woodlands 2

Code Updates, NFPA 37, Electrical:

- Comprehensive electrical replacement: 14
- Instrumentation and controls (0-5 years): 14
- Generator relocation; panel, MCC: 3
- Generator room fire rating; egress issues: 2

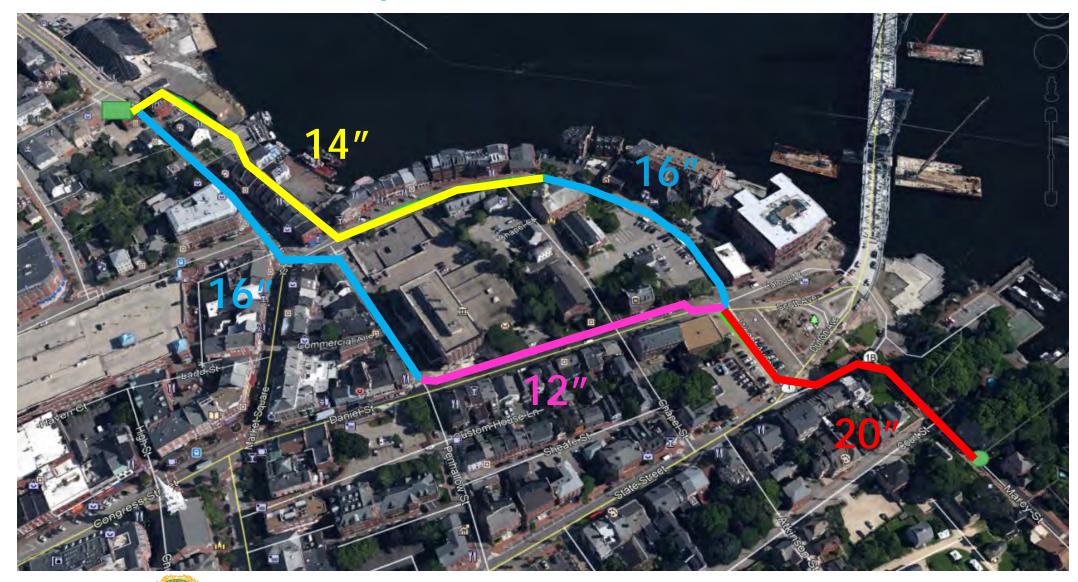
Code Updates, NFPA 820, Mechanical:

- Ventilation, declassification
 - 9 stations
- Wetwell penetration seals
 - 3 stations

Coastal Resiliency, 100-year coastal flood

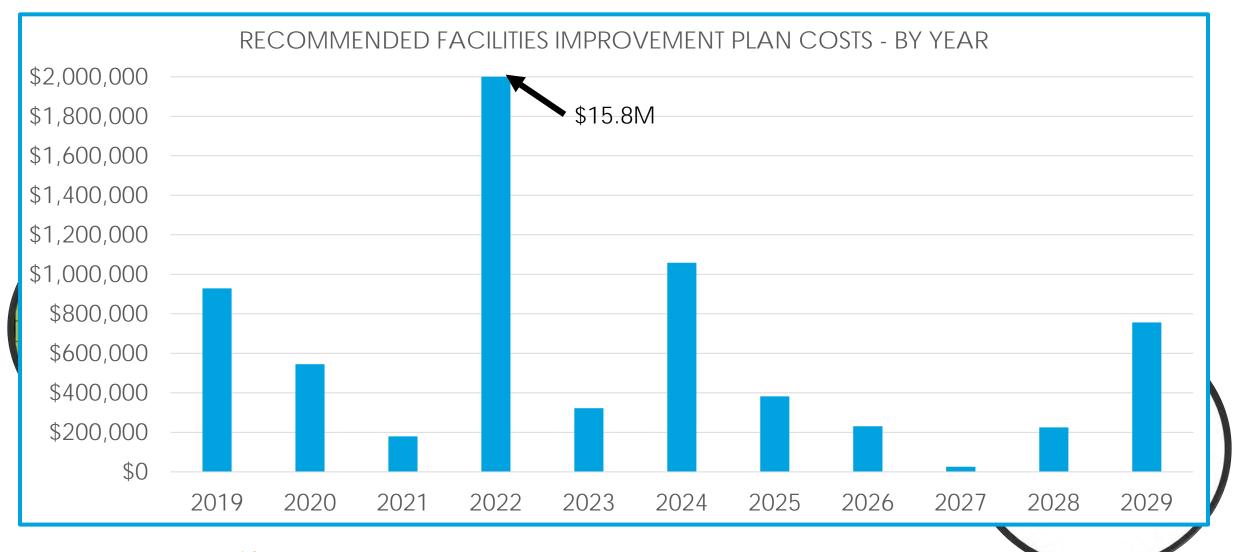
- 5 stations; current flood elevation
- 7 stations with 2050 flood elevation
- 9 stations with 2100 flood elevation
- Only 2 stations scheduled for replacement
 - Current Improvement Plan
 - Recommendations

Results: Force Main Priorities



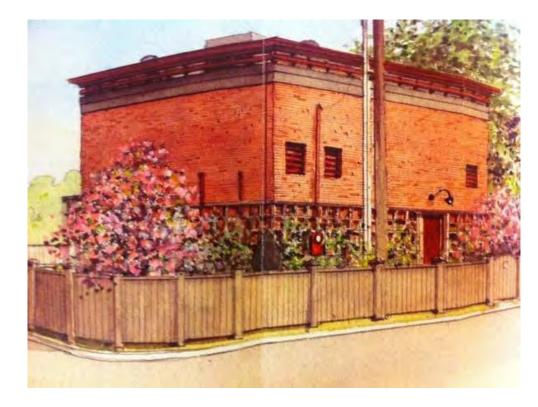
- 10 stations no issues
- 40-60 year old AC: 5 stations
- Low flushing velocities: 5 stations
- Ferrous piping w/ corrosive soil: 5 stations
- Mixed materials/diameters: 4 stations
- Lack of functional valving, isolation: 3 stations
- Twice design TDH: 1 station

Results: Deer Street Pump Station Force Main


Results

	Extend exter	liem	Lecation	Unit Cest	Unit	Estimated	Estimated Cost	Priority	Year
1	Extend exter					- thursday			
		in the sewershed	•	-	-	-		Low	
rchitectur	al / Structural Impro	ven			- 32				
1	EVALUATE BU		Exterior	\$10,000	LS		High		2022
1			in the second				Ingn		
2	Replace roof wit	th high version to submersible station	(5-10 years) - Exterior	\$12,000					
3	Seal pump statio		Pump Room	\$500	/				
3	Sear pump statio	li di y v							
		on is occupied	Pamp Room	\$1.0	\$1,0	000	High		201
		piping	Pump Room	\$1,0			-	-	
Iechanical Improvements real with a ventilated thumble		Pamp Room	\$1.0	\$1,0	000	Medium	1	202	
1	Install mechanis	m te	Pump Room Pump Room	\$1,0			Medium		202
1			Pump Room	\$1.00	\$1,0	00			
2	Replace insulation		1		\$1,0	000	Low		202
1	Replace		Pamp Room	\$3,000				-	20
Flaindad	Enstrumentation Improvements	veli	Wet Well	\$5,000	V	000	Low	-	
E.FELLIPLE	Install Exit/Emergency lighting		Mult.	\$5,000	LS				
1 1 1	Provide use Oash safety labeling		Mult.	\$500	1.5				2019
	7 submersible t		Wet Well Wet Well	\$2,500	1.5	1			2022
	de de	intrinsically safe methods	Pump Room	\$3,000 \$100,000	LS	1			2019 2024
		sent	Exterior	\$15,000	1.5				2025
	High Priority Pro	UPS	Controls	\$2,500	1.5		\$13,5	00	019
	High Phonty Proj						Ф1Э, Э	00	
	Medium Priority I					e	110 0	00	
						Þ	118,0	00	
	Low Priority Proj								
							\$40,5	00	
	btotal								

Results



- 10-years of identified improvements: \$20.5M
 - High priority: \$15.6M
 - Medium: \$2.7M
 - Low: \$2.2M
- Organized by station, year of implementation
 - Collaboration meetings with City staff
 - Prioritized by criticality
- City staff improvements, low hanging fruit
 - Began implementing immediately

Mechanic St PS \$14.9M

Mechanic St – Interim Improvements

- \$15M a lot at this time
- Evaluate option to extend life 5-10 years
 - Replace pump(s), controls, electrical, etc.
 - Select facilities improvements
- Site Challenges and Opportunities
 - Waterfront
 - Own Adjacent Parcel
 - Tight Space, Adjacent Park Coordination

Deer St – Interim Improvements

- Code Related
 - Architectural, HVAC
 - Generator room fire code
- Force Main
 - Replace isolation valves
 - Pipeline condition assessment
 - Replace air relief valves
 - Potential replacement alignments

- Group like projects at multiple pump stations
 - Pump station replacement 5-10 years: 4
 - Electrical, instrumentation, HVAC, generator relocation: 3
 - Electrical upgrades: 4
 - Miscellaneous painting, roofing, masonry, etc.
- City staff projects
 - Vary in complexity and type
 - Balance of operations and project time
- Update "living" document
 - As work is completed
 - In preparation for each budget/CIP cycle
- Future asset management program

City of Portsmouth Department of Public Works

- Peter Rice Director
- Brian Goetz Deputy Director
- Mike Baker Pump Station Manager
- James McCarty GIS Manager

Wright-Pierce

- Mike Curry
- Kristen Lemasney
- Paige Howard
- Jeff Normandin

