

DESIGNING ENERGY EFFICIENCY AND NITROGEN REMOVAL OPTIMIZATION FOR A MAJOR WPCF UPGRADE IN SOUTHINGTON, CT

NEWEA Annual Conference – January 27, 2020

Cynthia M. Castellon, PE Christopher Bone, PE

SOUTHINGTON WPCF

Design Capacities

- Design Average Daily Flow Rate 7.4 mgd
- Design Peak Hourly Flow Rate 15.9 mgd
- Build-Out Peak Hourly Flow Rate 24.3 mgd

Construction and Upgrades

- 1957 Original Plant Construction
- 1964 Primary and Secondary Treatment Expansion
- 1965 Sludge Handling Expansion
- 1979 Major Upgrade, Nitrification, Intermediate Treatment
- 1995 UV Disinfection System
- 2007 Denitrification Filters
- 2015 Sludge Handling Upgrades and Odor Control
- 2020 Major Upgrade, Phosphorus Removal

DRIVERS FOR UPGRADE

New Phosphorus Effluent Limits

- Seasonal April 1 through October 31
- 7.53 lbs/day by April 2022
- Equivalent to 0.2 mg/L at current ADF of 4.5 mgd

Aging Infrastructure

- WPCF, Collection System, and Pump Stations
- Equipment upgrades
- Structural and architectural repairs
- Electrical system improvements

Improve Energy Efficiency

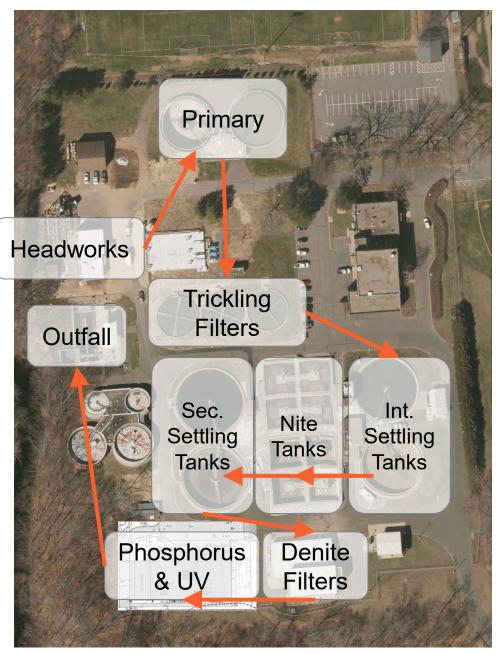
- Modernize plant
- Upgrade motors, drives, control systems, and building HVAC systems

SOUTHINGTON WPCF UPGRADE

Construction

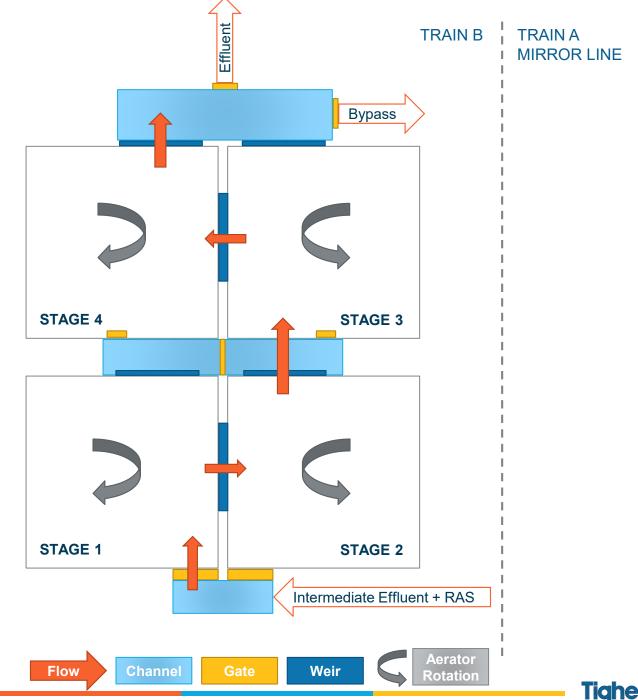
- Construction Cost of ~\$40 M
- ~50% complete as of Dec-19

Funding


- Clean Water Fund
 - 50% grant for construction costs related to phosphorus removal
 - 30% grant for construction costs related to biological nitrogen removal
 - 20% grant for balance of costs not related to nutrient removal
- Energy Utility Rebate Incentive

LIQUID TREATMENT

NITRIFICATION REACTORS



NITRIFICATION REACTORS

FACILITIES PLAN – EQUIPMENT EVALUATION

Condition Assessment

- Condition and Age of equipment warranted replacement

Replacement Alternatives

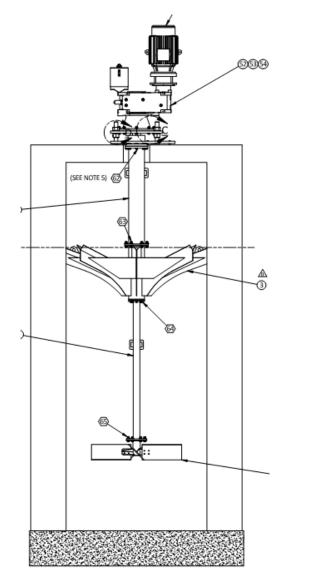
- #1: Fine Bubble Diffusers and Blowers with VFDs
- #2: New Surface Aerators with VFDs
- #3: Mixer / Aerator Units and Blowers with VFDs

Evaluation

- Capital Costs
- Annual Operating Costs (energy, maintenance)
- Process Impacts

ALTERNATIVES ANALYSIS

• #1 Fine Bubble


- Pros:
 - Lower operating costs (3%)
 - Higher O₂ transfer efficiency
- Cons
 - May overaerate if:
 - Diffuser turndown, or
 - Minimum air required for mixing
 - are greater than minimum process requirements
 - New blower building required
 - Baffles in each basin required to prevent flow short-circuiting
 - Protect offline diffusers from ice and sunlight

#2 Surface Aerators

- Pros:
 - Lower capital costs (33%)
 - Ability to decrease speeds during minimum process air demands and use lower impeller to mix
 - Vigorous agitation prevents short-circuiting
 - Replacement in kind
- Cons
 - Less energy efficient
 - Lower O₂ transfer efficiency

RECOMMENDED ALTERNATIVE

#2 Surface Aerators

Pros:

- Lower capital costs (33%)
- Ability to decrease speeds during minimum process air demands and use lower impeller to mix
- Vigorous agitation prevents short-circuiting
- Replacement in kind
- Cons
 - Less energy efficient
 - Lower O₂ transfer efficiency

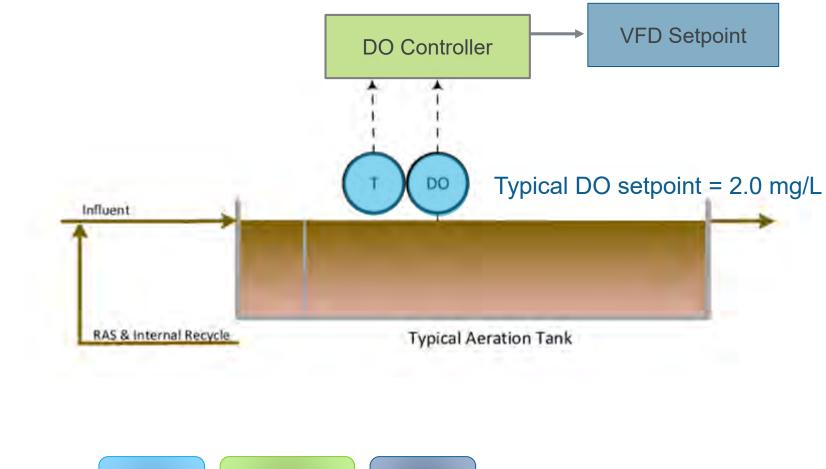
Sketch courtesy of Ovivo

DESIGN PHASE – CONTROLS EVALUATION

Existing Controls

- Two-speed aerators
- Speed controlled based on dissolved oxygen levels in each basin
- Mostly operate at low speed (90% of the time)
- Low speed maintains DO at 2.5 to 4.5 mg/L

Upgrade Alternatives


- #1: DO based aeration control with turndown
- #2: Ammonia based aeration control

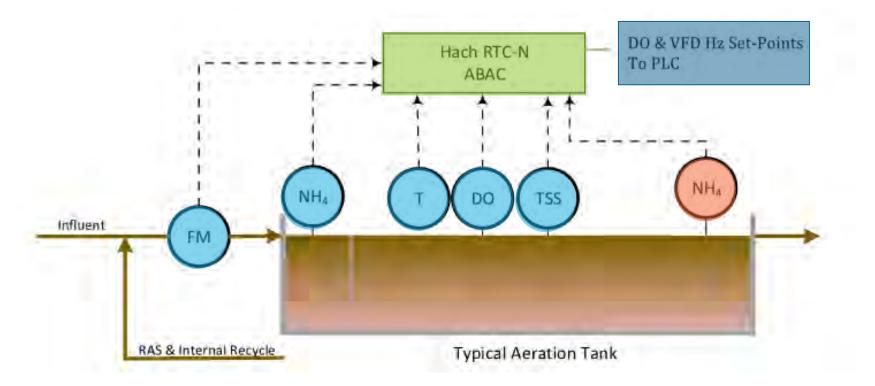
Evaluation

- Detailed capital and annual costs evaluation, per DEEP sole-source request
- Energy efficiency
- Process impacts

#1: DO BASED CONTROL

#1: DO BASED CONTROL

Pros


- VFDs allow tighter control of aerator speeds
- Maintain DO close to setpoint
- May decrease over-aerating
- Results in energy savings
- Typical control strategy

Cons

- Slow to respond to changing BOD and ammonia loads
- Potential to under-aerate or over-aerate during lag
- High DO can impact denitrification and increase methanol usage

#2: AMMONIA BASED CONTROL

Typical DO setpoint = 0.2 mg/L

Sketch courtesy of Hach

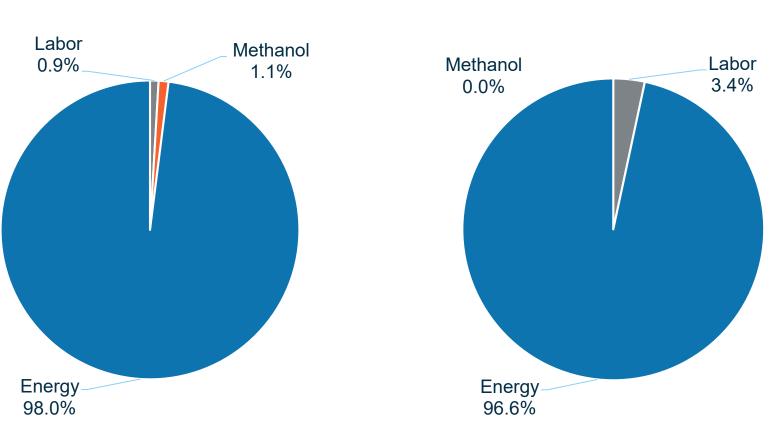
#2: AMMONIA BASED CONTROL

Pros

- Provide minimum oxygen required for full nitrification by monitoring ammonia
- Average DO residual of 0.2 mg/L
- Faster response to changes in loads with feed-forward loop
- Tighter DO control leading to less DO in denitrification process, decrease methanol
- Reduce energy by matching oxygen supply to the oxygen demand in real time

Cons

- Requires additional instrumentation and maintenance for ammonia and TSS sensors
- Requires complex programming or proprietary package
- Complex control strategy


Capital Costs (\$ Thousands)

Items	Alternative #1 DO Based Control	Alternative #2 Ammonia Based Control
Instrumentation and Mounting Hardware *	4 DO Probes	4 DO Probes 2 Ammonia Probes 1 TSS Probe
Controllers *	2 total	5 total, plus proprietary real time control module
SCADA System Integration	\$	\$\$
Electrical	\$	\$\$
<u>Overall</u>	<u>\$440</u>	<u>\$570</u>

* Mounting hardware and Controllers for two trains, Probes for online train only

Annual Costs (as percentages)

Alt #1: DO Based Control

Alt #2: Ammonia Based Control

- Operating Costs Energy Assumptions
 - Included motor and VFD part-load efficiencies
 - Actual oxygen requirements based on BOD and TKN
 - Energy to maintain DO residual of
 - 2.0 mg/L (Alt #1) vs. 0.2 mg/L (Alt #2),
 - Based on oxygen transfer rate for new aerators
 - Continuous operation and varying loads & speeds

- Operating Costs Labor Assumptions
 - Staff time for routine and preventative maintenance of probes
 - Spare parts and equipment replacement costs
- Operating Savings Methanol Use
 - Comparison of methanol usage to counteract presence of residual oxygen levels:
 - DO of 2.0 mg/L for Alt #1: DO Based Control
 - DO of 0.2 mg/L for Alt #2: Ammonia Based Control
 - Evaluate turndown capability of existing methanol feed pumps

Annual Costs (\$ Thousands)

Items	Alternative #1 DO Based Control	Alternative #2 Ammonia Based Control
Energy	\$131	\$110
Labor	\$1.2	\$3.9
Methanol	\$1.4	\$0
<u>Overall</u>	<u>\$133.6</u>	<u>\$113.9</u>

• Life Cycle Costs (\$ Thousands)

	Alternative #1 DO Based Control	Alternative #2 Ammonia Based Control
Capital Costs	\$440	\$570
Annual Operating Costs	\$133.6	\$113.9
Present Worth Total (20-year life cycle) *	\$2,470	<u>\$2,110</u>

* Including major equipment replacement costs over 20 years

SELECTION OF AMMONIA BASED CONTROLS -A CLOSER LOOK:

Favorable Economics

- Lower operating costs, lower life cycle costs despite higher capital
- Clean Water Funding for Nitrogen Removal
- Energy Utility Rebates for Energy Efficiency

Process Optimization

- Tighter control of DO and aerator speeds
- Less over-aerating and less DO in denitrification process
- Real time monitoring and control

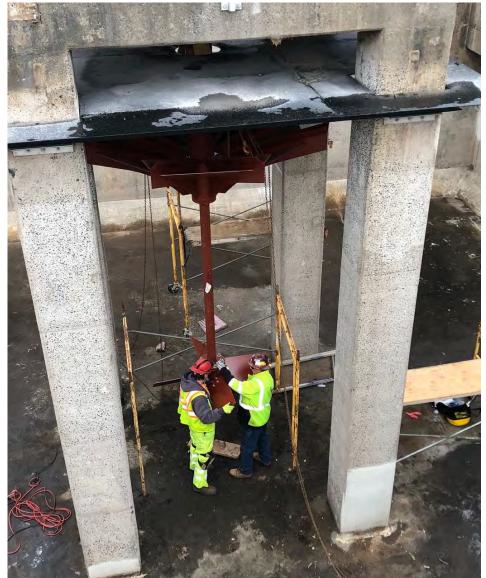
Operational Considerations

- Increased complexity and more instruments
- Operators conducted extensive ammonia probe trial
- Interest in process improvements and energy savings

ACKNOWLEDGMENTS

Tighe & Bond

Steve SeigalChris BoneFred MuellerAmy Sowitcky


Southington Town & WPCF

Keith HaydenJames GrapponeKiari WilliamsKeith LangstonSteve GregoryKeith Langston

CT DEEP Steve Muollo

QUESTIONS?

Cynthia M. Castellon, PE cmcastellon@tighebond.com

