Stormwater Management in Multiple Dimensions

Carol Hufnagel, P.E.

June 4, 2019

Fundamental Question

 How can we make sure that the stormwater projects we implement address the broad range of needs?

Defining and Addressing the Range of Objectives

Satisfying regulatory requirements;

Gaining public support (and satisfaction) with a project; and Making wise choices with limited financial resources.

Regulatory Requirements

- Control of stormwater based pollutants
- Control of CSO discharges

National Map of Regulated MS4s

Public Expectations

- Reliable drainage
- No basement backup
- Protection from property damage

Can you tell a resident you are dealing with stormwater and not address their flooding concerns?

Financial Constraints

- Funding limitations
- Restrictions on use of funds
- Avoiding scope creep

Approach

- Identify the primary project purpose
- Identify the broader needs of the area
- Define a dual purpose project that allows for multiple objectives to be achieved.
- Consider the "business case"
- Consider phasing and future opportunities

Single Purpose Planning Study

Project Identification Outcomes from Planning Study

Testing business case and potential shared funding

Retain flexibility

Example 1: Detroit/ Oakman Blvd

- Primary project purpose:
 - Regulatory requirement to implement GSI for CSO control
- Broader need of the area:
 - Basement backups
- Dual purpose project (objectives):
 - Maximize feasible stormwater control for CSO reduction
 - Reduce flow loading on local sewers
- Project Elements:
 - Bioretention for direct surface flow
 - Subsurface chambers for greater volume management and larger tributary area
 - Reconnecting flow around local bottlenecks/ sensitive areas

Median Bioretention

Base and Expanded Project Areas

Feasible surface GSI drainage area 20.5 acres

Additional drainage area 42.5 acres

The Expanded Need

450 homes (56%) of the homes in the area suffered basement backup during the 2014 storm

Estimated Economic Impact: \$5,000,000

S Pattern Ð rainage riginal

Patteri Ð rainage Revised

Project Data

Project Approach	Acres Served	Approximate Cost	Cost/Acre	Level of Control
Surface GSI only	20.5	\$2,020,000	\$98,500	1-inch storm
Expanded to Subsurface	42.5	\$4,300,000	\$101,000	Critical storm basement protection
Overall project	63	\$6,320,000	\$100,000	Varies

Business test:

Regulatory objective: accomplished in the entire area at \$100,000 per acre Basement backup objective: accomplished within the same per acre cost

Example 2: Atherton, CA – Dual Purpose from the Start

- Regulatory; Water Quality SF Bay Municipal Regional Permit (MRP)
 - Requires 100% trash load reduction or no adverse impact to receiving waters by July 1, 2022
 - Requires Atherton to develop and implement Green Infrastructure (GI) Plan
 - Reduce contributions by 2020 (end of current MRP term) of PCBs (0.2 g/yr) and Mercury (0.056 g/yr) through GI
- Flood Control
 - 2015 Drainage Study (10 ac-ft of storage needed to manage to the 10-year, 24 hour storm)

Benefits through Scale

- Water Quality Management
- Flood Reduction
- Beneficial Reuse
- Cost Efficiency
- Limit Scale of O&M

Schematic Layout

Atherton Water Capture Project (Water Flow Process Schematic)

Proposed Site Layout

Business Evaluation

- Regulatory Performance:
 - Meets Town WQ load reduction requirements
 - Average annual capture = 194 ac-ft
- Flood Management Performance:
 - Reduce peak flows by 100 cfs
 - Facility eliminated flooding downstream for largest storm in record (model)
- Tributary area is 4.4 sq-mi (90% of Atherton size)

Construction Cost

- \$11.5 million
- \$7.5 million in dual purpose storage
- \$2 million treatment and reuse
- \$2 general site improvements

Bioretention Addition - Flexibility

Design Concepts Designing for the full spectrum

stormwater Quality Stormwater Quality Stormoster Storm CSO Design Storm Nuisance Ponding **Basement Backup**

Localized Flooding

Riverine Flooding

Storm of Record

Key Concepts

- Be intentional in developing multipurpose projects
- Be creative in accomplishing project goals
- Added unit cost may be relatively small
- Project budget may be greater needs to be accounted for in planning
- Maintain flexibility for additional elements that could help enhance goals in the future.

QUESTIONS?

For More Information Contact:

Carol Hufnagel Tetra Tech Inc. Carol.Hufnagel@tetratech.com