

BOILER UPGRADE PROJECT MANCHESTER, NH WWTP

Robert J. Robinson, P.E. Robert Morris Ryan Nealley, P.E., C.E.M. – Yeaton Associates June 3, 2019 ENTAL VEATON ASSOCIATES, INC.

DEPAR

OF P

Agenda

- Manchester Background
- Boiler Project Need
- Alternatives Analysis
- Basis of Design and Equipment Selections
- New Boiler System and Controls
- Air Handling Upgrades
- Hot Water Storage Tanks
- Boiler Operations
- Fuel Savings and Rebates
- NOx Reduction
- Questions

1	GENDA
E	
Ľ	

Background – City of Manchester

- Largest City North of Boston 110,000 population
- Settled in 1725
- Evolved from Agricultural to Industrial: 1725 1815
- Amoskeag Mills: Largest single mill in the world 1915
- Post Industrial Depression: 1935 1980's
- Revitalization: 1990 to Present

Environmental Protection Division

- Created in 1975
- Division of Manchester's Department of Public Works
- An "enterprise"
- Staff of 43
- 15 acre campus at 300 Winston Street
- 10 buildings
 - Administration
 - Operations
 - Maintenance

Manchester's Wastewater Infrastructure – WWTP

- 1975 26 mgd
- 1994 Upgrade to 34 mgd
- 2016 Upgrade to 42 mgd
- Serves four communities
 - Bedford (4.37%)
 - Goffstown (4.11%)
 - Londonderry (10.16%)
 - Manchester (81.36%)
- Metro pop. 172,000

Boiler Project Need

- Existing Equipment
 - Three original 300 HP oil fired steam boilers built in 1973
 - They were 40 years old and in need of replacement
 - The original boilers were rated at 10 MMBtu each
 - The oil consumption was 1,200 gallons of No. 2 Fuel Oil per day
 - The boilers were turned on November 1st and shut off May 1st each year

Alternatives Analysis

- During the schematic design phase of the project four options were considered and analyzed:
 - Option #1: Non-Condensing Boilers with Thermal Mass Storage Tank
 - Option #2: Condensing Boilers with Thermal Mass Storage Tank
 - Option #3: Condensing Boilers and Water-to-Water Heat Pump (Using Wastewater) with Thermal Mass Storage Tank
 - Option #4: Biomass (Wood Chip) Boiler Plant
 - Potential Future Option: Biogas Fuel Cell utilizing potential future anaerobic digester.

Option #1: Non-Condensing Boilers with Thermal Mass Storage Tanks

- Gas-fired atmospheric non-condensing boilers (80% Efficient) with a supply water temperature of 200°F and a ΔT of 40°F to match existing building system.
- Primary/Secondary loop layout including new pumps and equipment.
- 4,000 Gallon storage tank (180°F Max. Temp.) supplied with heat exchangers to store thermal energy from the incinerator. Load side immersion heat exchangers for domestic hot water preheat and space heating.
- All existing hydronic terminal equipment to remain at 200°F inlet temperature.

Option #2: Condensing Boilers with Thermal Mass Storage Tank

- Direct Vent Gas Condensing boilers (92% Efficient) with a supply water temperature of up to 180°F and a low temp. loop at 140°F supply temp.
- Primary/Secondary loop layout including new pumps and equipment.
- 4,000 Gallon storage tank (180°F Max. Temp.) supplied with heat exchangers to store thermal energy from the incinerator. Load side heat exchangers for domestic hot water and heating.
- All new hydronic heating equipment (coils, fin-tube, unit heaters, etc.) selected for 160°F supply and a Δ T of 40°F.

Option #3: Condensing Boilers and Water-to-Water Heat Pumps with Thermal Storage Tank

- Water-to-Water Heat Pumps utilizing the effluent water from the sewer as a heat sink for efficient operation of the heat pumps. The system shall provide hot and chilled water to the building.
- A gas fired direct vent condensing boiler plant shall act as a backup heating plant during the winter.
- 4,000 Gallon storage tank (180°F Max. Temp.) supplied with heat exchangers to store thermal energy from the incinerator and to pre-heat domestic hot water and space heating.
- All new hydronic heating equipment (coils, fin-tube, unit heaters, etc.) selected for 160°F supply and a Δ T of 40°F.

Water to Water Heat Pump

Option #4: Biomass (Wood Chip) Boiler Plant

- The existing boilers would be removed and replaced with a biomass (wood chip) boiler plant.
- It would require an addition for the delivery and storage of wood chips.
- A conveyor system would bring the chips from the storage bins to the biomass boilers. And a lift to bring the ash to street level.
- The boiler plant would have a 200°F supply and a ΔT of 40°F .
- It would require a new primary / secondary piping layout and it would be connected to our hydronic system.

Biomass (Wood Chip) Boiler Plant

Future Option: Biogas Fuel Cell

- With the potential of a future anaerobic digester being installed on site a Biogas Fuel Cell for production of electricity was discussed.
 - Biogas reclaimed from the digester would be fed to a 1.4 megawatt Fuel Cell for energy production.
 - Fuel cell requires 55% methane for proper operation and would provide electricity as well as low and high grade waste heat for use in the building.
 - Configured for Co-Gen operation the total thermal efficiency nears 90%.
 - Low quality heat gets returned to the digester and high quality heat is transferred to the thermal storage tanks for use by the building systems.

Energy Flow Diagram - Existing

ENVIRONMENTAL PROTECTION DIVISION

Energy Flow Diagram – Options 1 & 2

TOF MANCHE

ENVIRONMENTAL PROTECTION DIVISION ANT OF PUBLIC

Energy Flow Diagram – Option 3

System Comparisons

- Existing Boiler System with DX Rooftops
 - Fuel Oil: 136,000 gallons
 - Electricity: 76,682 kWh
 - Annual Energy Cost: \$385k
- Option #1: Non-Condensing Boilers with DX Rooftops
 - Natural Gas: 170,000 Therms
 - Electricity: 76,000 kWh
 - Annual Energy Cost: \$199k
- Option #2: Condensing Boilers with DX Rooftops
 - Natural Gas: 159,000 Therms
 - Electricity: 76,000 kWh
 - Annual Energy Cost: \$187k
- Option #3: W2W Heat Pumps with Condensing Boilers
 - Natural Gas: 32,000 Therms
 - Electricity: 1,164,000 kWh
 - Annual Energy Cost: \$160k

Basis of Design

- The option determined to best fit the economical and operational needs of the facility was that outlined in Option #2 as follows:
 - Gas fired, direct vent condensing boiler plant with dual temperature returns. Min. of 20% return water below 130°F required for condensing operation with an efficiency of 93%.
 - Two 2,000 Gallon ASME rated thermal storage tanks including heat exchangers for incinerator, domestic hot water, process hot water, and space heating.
 - Low Temp supply to new heating coils in RTU's and perimeter heating to ensure 20% low temp return water.
 - Refurbishment of HV units including new fans, hydronic coils, and pumps.
 - New direct digital control (DDC) BMS from JCI to replace existing pneumatic controls in the building.
 - Test and Re-Balance of the buildings air and water systems.

Equipment Selections

- Boilers: Cleaver Brooks Model CFC 3300
- Draft Inducer: Enervex RSV 400
- Plate and Frame Heat Exchangers: Alfa Laval
- Circulation Pumps: Grunfoss CRE & VLSE type
- Administration RTU Coils: Trane DSWB type
- HV Heating Coils: Carrier
- Thermal Tanks: Fabricated by Steel-Pro
- DDC BMS: Johnson Controls Incorporated

New Boiler System and Controls

- Four new energy efficient gas fired dual temp return hot water condensing boilers
- The new boilers are 3.3 MMBtu each
- New piping and air handling equipment

New Boiler System and Controls

- Project Completed 2017
- Project Cost \$2.5 Million
- The project was completed on time and on budget

Air Handling Upgrades

• 4,000 Gallons of Hot Water Storage

- The Economizer (air to water heat exchanger) from the Fluidized Bed Incinerator converts hot air to hot water.
- The hot water was once only used as it was produced. With these tanks we are able to capture and retain 4,000 gallons to be used later.

Hot Water Storage

Boiler Operations

PROTECTION

DIVISION

ENT OF PUBL

- The new boilers are operated year round
- The year round operation allows the WWTP to have hot process water even when the incinerator is not in operation
- This helps improve cleaning operations
- It also allows us to have heat before November 1st and after May 1st when the old boilers were not in operation

Fuel Savings and Rebates

Annual Average Savings of \$100K

Rebates of \$200K

NOx Reduction

90%

Acknowledgements

Thank You...