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» Current regulations limit the amour

» Common practice is shiffing phosphorus from liquid waste to solid waste
e.g. ferric or alum precipitation

» Does not remove the potential of phosphorus to contaminate
waterways later in its lifecycle
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> Nitrification
> Denitrification
» N is emifted from the system as N, gas
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Alkalinity demand 7.14 g / g NH*,-N oxidized
Carbon demand 4.77 g COD / g NO;-N reduced

Source: Pugh, 2015



EBNR

Phosphorus Removal
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» Anaerobic growth of Phosphorus Accumulating Organisms (PAQOs)

» Aerobic uptake of phosphate (PO,3)



EBNR

Phosphorus Accumulating Organisms
Anaerobic Aerobic

Influent °
PO43'




A BIG ISSUE HIDING IN PLAIN SIGHT

EBNR is very effective at removing P from wastewater

BUT...

It concentrates all that P into the solids that enter the digestion process
Cell lysis and bacterial decay rupture cellmembranes and release contents

Phosphate precipitates have become
a big operational concern

PAOs are rich in all the ingredients
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Easy for plants to recycle large

amounts of P causing a “cycle up”
Need to maintain removal of
influent P, even at lower levels
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Aerobic Digester P levels at a BNR facility



BIOSOLIDS DEWATERING

The Effects of Phosphorus

» Increase in P corresponds with decline in dewatering performance
EBNR facilities especially susceptible

Example Denver R Hite WWTP

» Several compounding factors m—
» Availability of ortho-P
» Mono- to Divalent ratio (M/D)

» Extracellular Polymeric Substances (EPS)

Jan-09 Jul-09 Jan-10 Jul-10 Jan-11 Jul-11 Jan-12 Jul-12

oDCEN4, Cake TS xDCEN, FeedTS
Source: Benisch, 2015



» Increase in M/D resu

M Na*+K*
D Mg?*t + Ca?t

Source: Kara, 2007

M/D increases when Na* or K*increase, Mg?* or Ca?* decrease
Divalent P precipitates have negative effects on dewatering




BIOSOLIDS DEWATERING

Extracellular Polymeric Substances

» EPS is a combination of macromolecules excreted by bacteria
Negatively affects dewatering because of high stored water content
Primary macromolecules are polysaccharides and proteins

» Ortho-P adheres to proteins
Unfolds proteins; used in food
processing to stabilize
emulsions
Expands EPS
Allow more space for water Unfolded
storage 2 poor dewatering

Sources: Selling; Rus, 2016
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Many plants remove P during de
e.g. Fe,(SO4)3 & Al (SOy)3
Forms a precipitate (FePO, & AIPO,) that drops into the cake

P not precipitated returns to head of the plant in the filtrate, centrate, etc.
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PAOs reach a saturation po
Metal salt addition during dewatering is constrained

Amount of metal salt required to precipitate all incoming P becomes very large
Lowers pH that brings corrosion concerns to dewatering equipment

Chemicals are expensive



» Implement process
conversion in the AD

» Decrease the overall HRT for the anaerobic digestion process
improved solids destruction and biogas production




Anaerobic Processes
(no oxygen)

Recycle SNDR

Stream 95°F
8 day HRT
15% VS des
HeatEx Ammonia removal
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Processed Biosolids



LAB

Steady-State VS Destruction

S7.

64.3%

» Continued operation of the AD came
with an increase in VS destruction

» Recycle maintained VFA/ALK under 0.3

» No spikes in VFA concentration or
foaming events

» Low NH; and H,S in biogas

» Biogas production is in upper end of
iterature values
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| ADBiogasAverages |-
Ammoniappm) 606

Methane (% 61.9%
Biogas produced (ft*3/Ib VS 13.47



Total Solids Coagulant Flocculant Cake Solids Coagulant Flocculant
(%) (mL Ferric Sulfate)| (mL Polymer) (%) (active Ib/dry ton) | (active Ib/dry ton)

» Fully mesophilic system yielded superior dewatering results
» Eliminated coagulant demand and significantly reduced /

polymer requirement

» High TS reduction and high cake solids lower amount of
material to haul considerably

» AnAer system provides major benefits to dewatering
operations o



» Ammonia decreaseo
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» Maintaining lower NH; keeps pH slightly lower;

» Lower ammonia and pH both decrease struvite potential
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Address multiple issues negative
Reduce chemical costs
Form a product



A NEW APPROACH
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2. Dewatering

3. P Recovery
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and carbohydrate

Breaking up proteins and carbohydrates (polysaccharide
disrupfts the production of EPS that negatively affects
dewatering

» Reduces alkalinity through nit/denit cycles
» Effective when following ATAD or anaerobic digester



SNDR following ATAD
» Cell lysis In the ATAD creates strong emulsion
» Coagulant is needed to break the emulsion
» 10-20% reduction in polymer demand



» Acid hydro
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» Lowers pH which prevents precipitates fron
Mg?* and Ca?* remain soluble = lower M/D

» Lower alkalinity = less acid required - SNDR is key



» Balances cake
» Lab testing shows >30% decrease in cake we

» Centrifuge dewafering achieved >35% cake solids
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» Minimal alk
activity remaining

» Absence of solids removes
“*‘contaminants” that lower P
recovery efficiency
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PHOSPHORUS RECOVERY

Chemical Precipitation

» High P liquid stream with little pH bufter

» Target either brushite or
sfruvite formation

» Precipitate readily forms aft
right conditions

» Soluble Ca?* and Mg?*
already present reduce
chemical demand
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MgHPO,H,0

MgNH,PO,6H,0

Struvite Solubility

Source: Kim, 2016
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Total Pho.s-phorus 749% 96% 839
Solubilized
Soluble I.Dh.osphorus 919% 93% 929%
Precipitated
Total Phosphorus 799 399 79%
Removed




PHOSPHORUS RECOVERY

lon Exchange

» Liquid centrate can be passed through an ion exchange column

» Hybrid lon Exchange Nano-Absorptive Media (HIX-Nano)

Utilizes iron or zirconium oxides for ortho-P affinity

» More effective at lower pH

Phosphate free Phosphate loaded
water

Sorption
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(k) or (NH;* )+ (HPO47)

Acid

Phosphate sorption

and release
Source: Weinberg, 2017
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PHOSPHORUS RECOVERY

lon Exchange

» HIX(Fe)-Nano captures ortho-P and releases a concentrated
solution to storage tank

» Ortho-P selectivity removes contaminants from effluent

» Concentrated P solution is ideal
for making valuable products
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- Hydroponic fertilizers

- Fluidized catalytfic cracking
catalysts
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. Lithium-ion battery cathode
material 0 ' ' 3 .
Bed Volumes

Source: Weinberg, 2017
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Anaerobic Dige
VS & COD Destruction

ITrI Ulo |
EPS Reduction
Alkalinity Reduction

SNDR
Nitrification/Denitrification
EPS Reduction

Alkalinity Reduction TPR

Dewatering

TPR
Dewatering Low P Cake P Product -

Low P Cake P Product



» Lowering P return 1o headwc

» Combines with lower NH; and pH in AD fo significantly redt
precipitation potential

SNDR after ATAD
» SNDR greatly improves dewatering of ATAD material

» Lowering P return to headworks begins to “cycle down” plant



AnAer Pilot Study

» Implements effect process control for anaerobic digestion
» Demonstrated significant reduction in material hauling

» Reduces precipitation potential

Targeted Phosphorus Recovery

» Conditioning material is critical to providing a “cleaner chemistry”
» “Target” P to remain soluble through dewatering

» Removes expensive standard coagulants

» Improves dewaterability of biosolids

» Multiple routes for recovering P after dewatering



» Continue patent-approval proc

Targeted Phosphorus Recovery
» Continue lab research to optimize current process
» Install & operate on-site pilot at ThermAer™ facility

» Continue patent-approval process
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Thank you!

Questions/Comments?

Contact info: 7'\
Justin Wippo #
jwippo@thermalprocess.com



