WASTEWATER TO BIODIESEL STUDENT PROJECT

Resource Recovery Systems

UCŬNN

GNHWPCA

Justin Motta, P.E. Stantec Dr. Richard Parnas, UCONN and REA Resource Recovery Systems

FOG to Biodiesel Pilot Facility at

GNHWPCA's East Shore WPAF

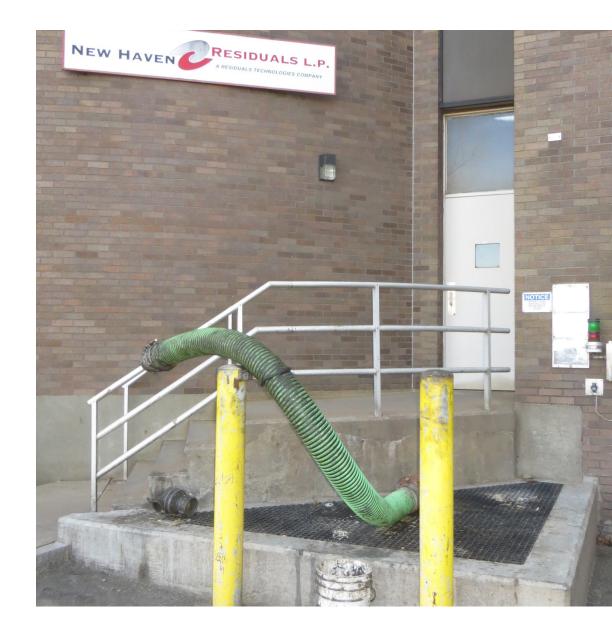
Greater New Haven Water Pollution Control Authority (GNHWPCA)

January 30, 2019

Agenda

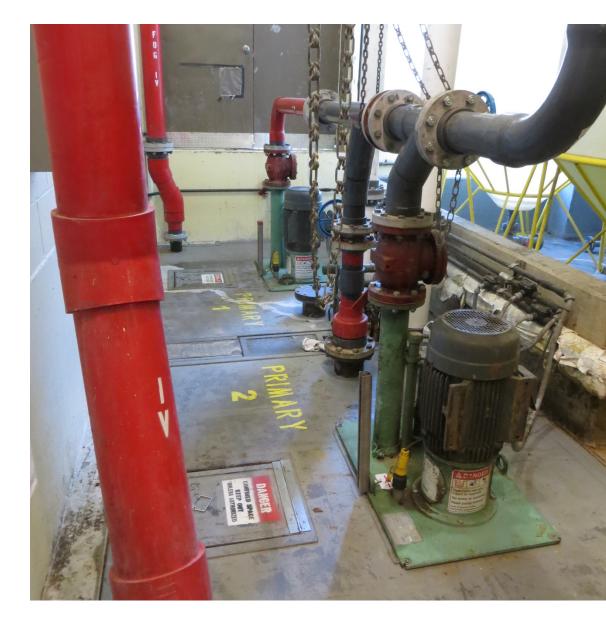
- 1. Background
- 2. Feedstock Material
- 3. Technology
- 4. Project Overview
- 5. Benefits

Background


East Shore WPAF

- Owned and Operated by the Greater New Haven WPCA
- Plant Flow
 - 27 MGD Average Daily Flow
 - 40 MGD Average Design Capacity
 - 100 MGD Wet Weather Peak Flow
- Effluent discharges into Long Island Sound
- Regional Sewage Sludge Incinerator (SSI) operated by Synagro

Fats, Oil and Grease (FOG) Management Regional FOG Receiving Facility


- Developed in 2000; Upgraded in 2011
 - Unloading Station
 - Pre-Treatment
 - Rock trap grinder and transfer pump
 - 1st stage decanting
 - Two (2) heated 4,500 gal tanks
 - 2nd Stage Decanting
 - Two (2) heated 10,000 gal tanks
 - Pumped to Incinerator
 - Supplemental fuel source

Feedstock Sources

Regional FOG Receiving Facility

- Annual Volume
 - 4,000,000 gpy from FOG haulers
- Trap Waste Oil and Grease Concentration
 - 30,000 50,000 mg/l (3-5%)
- Brown Grease Feedstock
 - Range: 120,000 200,000 gpy
 - Average: 160,000 gpy

Feedstock Sources

Plant Scum

- Influent Oil and Grease Concentration
 - Plant Samples: 55-75 mg/l
 - WEF MOP 8: 50-150 mg/l
- Plant Flow: 27 MGD ADF
 - 540,000 740,000 gpy brown grease
- Decanted Scum
 - 1,600,000 gpy blended with sludge
 - Oil and Grease: 40%
- Total Brown Grease Feedstock
 - Plant Scum: 640,000 gpy
 - FOG Receiving: 160,000 gpy
- Wetwell Pumpings: 30 Stations

Technology FOG

FOG Resource Recovery Technologies

- Anaerobic Digestion
 - Biogas and Heat Recovery
 - <10% of WRRFs include AD
 - High Capital Cost
 - Large Footprint
 - Side stream: NH₃ and P
- Incineration
 - Heat Recovery
 - Supplemental Fuel Source
 - Air Emission Control
- FOG to Biodiesel
 - Biofuel
 - FOG only

Technology

FOG to Biodiesel History

- Blackgold Biodiesel Pilot Facility
 San Francisco
 - 2010-2011 2-year period
 - Produced < 50-gal biodiesel
 - High Sulfur
 - Preprocessing Issues
 - Corrosive Environment
- Argent Energy UK
 - Biodiesel from brown grease
 - Acceptance of fatberg material
 - Supply biodiesel for bus fleets

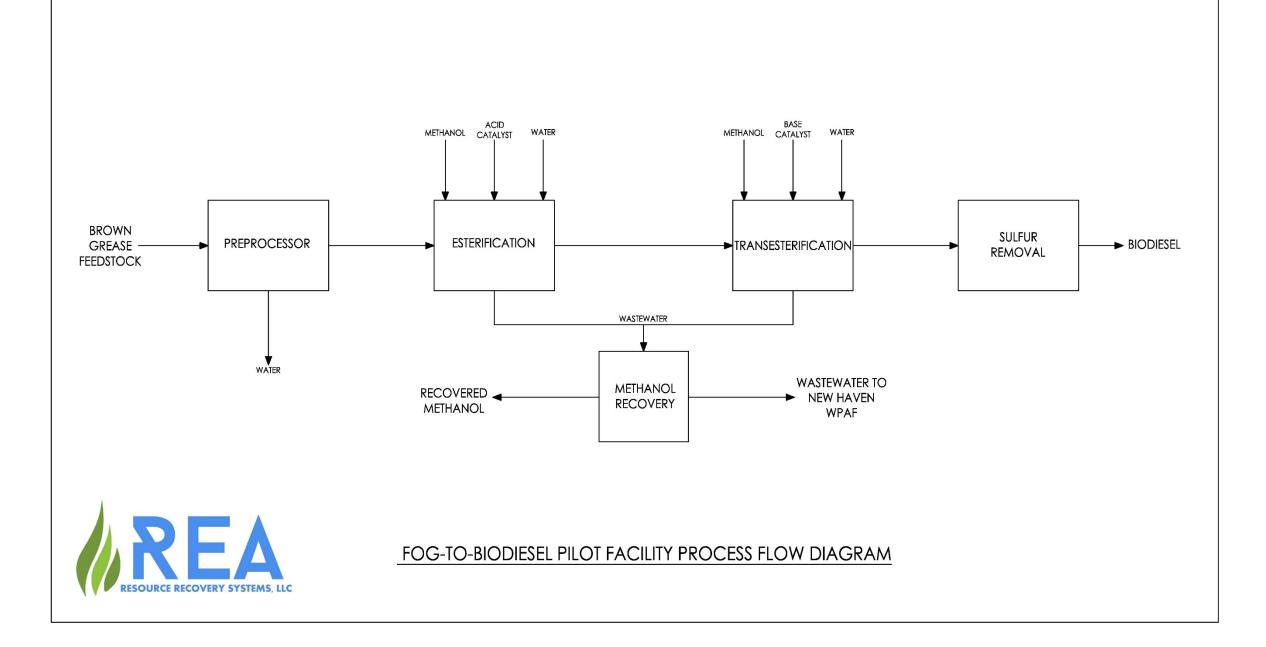
Technology

REA FOG to Biodiesel Technology

- Developed at UCONN
 - Research and Development
 - Bench Scale Testing
 - Continuous Flow Reactors
- Target Feedstock
 - Brown Grease
 - FFA up to 100%
- REA founded in 2017
 - Pilot Facility Design
 - Raised Capital

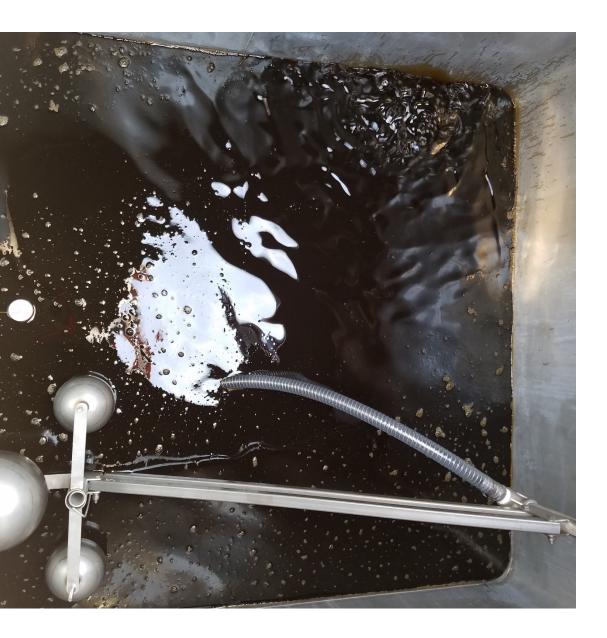
Project Overview

REA FOG to Biodiesel Pilot Facility


- Project Objective
 - Produce ASTM B100 biodiesel from wastewater FOG "brown grease"
 - Establish commercial viability
- Design Flows
 - 300 gpd brown grease feedstock
 - 250 gpd biodiesel
 - 600 gpd wastewater side stream
- Housed in steel shipping containers
- Generator Building
 - Electricity
 - Potable Water
 - Air

Project Overview

REA Schedule - Phase Approach


- Phase I: Produce Biodiesel
 - June 2018 September 2018
 - Equipment Installation and Startup
 - Produced 250-Gal Biodiesel
 - B5: Heating Fuel Blend Quality
- Phase 2: Process Optimization
 - In Progress
 - Methanol Recovery
 - Sulfur Removal: <15 ppm</p>
 - ASTM B100 Quality
- Phase 3: Production Maximization
 - Spring 2019
 - Full Scale Optimization
 - Routine Testing Program
 - Material Quantities

Brown Grease Extraction

Brown Grease Material Characteristics

- Oil and Grease: 98-99%
- Moisture: 1-2%
- pH: 3.8-4.5
- Solids: Fine Particulates
- Sulfur: 250-350 mg/L
- COD: 270,000-320,000 mg/L
- Volatile Solids: 99-100%

Preprocessor

- Storage
 - Two (2) 550-gal HDPE Tanks
 - Immersion Heaters 120 °F
- Water Removal
 - Recycle with hot air
 - Moisture: < 0.5%
- Fine Particulate Removal
 - Series of Filters
 - 150 $\mu m,\,75$ $\mu m,\,25$ μm and 10 μm

Esterification

- Acid Catalyzed Reaction
- Converts FFAs to Biodiesel
 - Start: FFA > 75%
 - Finish: FFA < 1%
- Heat and Mixing
 - CSTR Reactors
- Chemicals
 - Methanol
 - Acid Catalyst
- Wash and Dry Clean out Waste
 - Water, Methanol and Acid


Transesterification

- Base Catalyzed Reaction
- Converts Triglycerides to Biodiesel
 - Start: Triglycerides < 25%
 - Finish: Triglycerides < 1%
- Chemicals
 - Methanol
 - Base
- Wash and Dry Clean out Waste
 - Water, Methanol, Glycerin and Base
- Patented Reactor
 - UCONN IP licensed by REA

Methanol Recovery

- Distillation Column
 - Ambient Pressure
- Recover Methanol from Waste
 - 85% Recovered
 - 15% to Plant
- Non-Hazardous Discharge
 - Flashpoint > 140 °F
- Recycle Methanol to Process
 - Reduce Methanol Volume
 - Cost Savings \$\$\$

Sulfur Removal

- Distillation Column
 - Vacuum Pressure
- Sulfur
 - Start: B5 < 150 ppm
 - Finish: B100 < 15 ppm
- ASTM B100 Fuel
 - Increase Value
 - \$2.75 per gal
- Comparable to H₂S and Siloxane Removal of Biogas

Waste Stream

- Discharged to Influent
 - 600 gpd
- Wastewater Contents
 - Water
 - Methanol
 - Glycerin
 - Acid
 - Base
- Phase 3: Sample Testing Protocol
 - COD
 - BOD
 - pH
 - TKN
 - NH₃
 - P

Benefits of FOG to Biodiesel System

- Resource recovery of a negative value waste into a value-added product
- Generate Profit
 - Process 1,000,000-gal per year brown grease feedstock
 - Generate 825,000-gal biodiesel
 - Worth: \$2.75 per gal
 - Cost: \$1.50 per gal
 - Profit: \$1.25 per gal
- Promote FOG Management
- Reduce Carbon Footprint

Ruestions?

Justin Motta, P.E. | Justin.Motta@stantec.com Dr. Richard Parnas | Richard.Parnas@uconn.edu

Special thank you to:

ALITTEITED

REA UCONN

