Heads or Tails?

NEWEA 2019 Annual Conference Session 32 Garrett Bergey Director of Field Operations Stacey DePasquale Engineering (SDE)

sde

Session Agenda

- Background on SDE
- MA Small Municipal Separate Storm Sewer System (MS4) Permit Requirements
- Investigation Procedures
- Explanation of Bottom-Up Method
- Explanation of Top-Down Method
- Pros and Cons for Each Method

SDE's Background

- Conducting Illicit Discharge Detection and Elimination (IDDE) projects since 2001
- Completed 20+ projects in dozens of communities across Massachusetts
- Located over 935 direct and indirect illicit connections
 - Over 1,000,000 gallons of sewage per day removed
- Responsible for most investigative field work with Boston Water and Sewer Commission's (BWSC) IDDE program
 - Project Engineer for BWSC Citywide Illegals 4
- Experienced in top-down, bottom-up and hybrid approaches

IDDE Program Requirements

Objective: The permittee shall implement an IDDE program to systematically find and eliminate sources of non-stormwater discharges to its municipal separate storm sewer system and implement procedures to prevent such discharges.

IDDE Program Requirements (continued)

- Mapping
 - Phase 1 (within 2 years)
 - Phase 2 (within 10 years)
- Written IDDE Program detailing procedures Due 6/30/2019
- Outfall/Interconnection Inventory and Initial Rankings
- Dry Weather Outfall Screening
 - If you have system vulnerability factors then conduct Wet Weather Outfall Screening
- Conduct Catchment Investigations
 - Inspect ALL Key Junction Manholes (except excluded catchments)
 - Investigation in Problem Catchments (begin within 2 years complete within 7 years)
 - Investigation of catchment where outfall screening shows any info indicative of sewer input must be completed within 7 years
 - Investigation of High and Low Priority Catchments must be completed within 10 years

Key Junction Manhole Inspections

- Goal is to clear lines and to isolate any contamination
- Manhole Inspections Inlet by Inlet during dry weather
 - Flowing perform test kits and field testing
 - Visual and Olfactory observations
 - Test Kits
 - Ammonia Most reliable indicator
 - Surfactants
 - Chlorine
 - Observed Dry
 - Place sandbag for minimum of 48 hours
 - If flow captured by sandbag conduct same suite of test kits used on flowing lines
 - Clean test kit or dry sandbag can clear 800 to 1,000 linear feet of pipe
 - Standing Water
 - Unable to conduct inspection
 - Proceed upstream and downstream to bracket standing water
- Monitoring for Dry Weather Conditions

Building Inspections

Once contamination has been isolated, conduct building inspections to locate source

- Test multiple fixtures
- Allow enough time to find leaks
- Induce flow in pipes observed with standing water

Bottom-Up Method

- Begin manhole inspections at the outfall or interconnection
- Work systematically upstream until you reach the top of the catchment
- If contamination is found:
 - Continue inspecting upstream until the origin of the contamination is located
 - Continue inspecting side lines as you go
 - Once the origin has been located, then conduct additional investigations
- Note: All key junction manholes need to be inspected even if pipes are dry

Bottom-Up Method (Continued)

Map Images are courtesy of Boston Water and Sewer Commission

Top-Down Method

- Begin manhole inspections at the upper reaches of a catchment
- Work systematically downstream
- Inspect side lines as you go
- If contamination is found:
 - Work back upstream to isolate contamination to shortest stretch possible
 - Single run of pipe between manholes is ideal
 - Additional investigations along that contaminated segment to determine source
- Traditional approach
 - Stop working downstream once contamination is found
 - Wait for issues to be abated before proceeding
 - This can take time especially when homeowners are making repairs

Top-Down Method (continued)

Map Images are courtesy of Boston Water and Sewer Commission

Top-Down Method (Continued)

- Modified Approach
 - Start process the same as the traditional approach
 - Once contamination is found in a line
 - Continue conducting inspections downstream
 - Pipes with contamination are flagged indicating upstream contamination
 - This allows investigation to proceed without waiting for abatement
 - Can find additional issues if spikes in contamination levels are found

Top-Down vs. Bottom-Up

The biggest factor for determining which method will locate illicits more quickly is where are those illicits located within the catchment.

	Bottom-Up	Top-Down
Pros	 Does not require as detailed or accurate mapping Quicker if illicits are located near outfall 	 Traditional approach is most efficient Quicker if illicits are located in upper portion of catchment
Cons	 Unable to determine if there is one issue or many Not as efficient Potentially lots of dilution at starting point 	 Requires good mapping Takes more time

Questions?

Acknowledgements:

Boston Water and Sewer Commission Amy Schofield from BWSC Elizabeth Olson from SDE

Science of the second s