NEWEA 2019 Annual Conference MANCHESTER, NH WWTP Primary Clarifier/Thickener Upgrade

Frederick J. McNeill, P.E. - EPD

Robert J. Robinson, P.E. - EPD

David J. Mercier, P.E. – Underwood Engineers, Inc.

January 29, 2019

- Manchester Background
- Study
- Design
- Construction
- Lessons Learned
- Questions

AGENDA

Background – City of Manchester

- Largest City North of Boston 109,000 population
- Settled in 1725
- Evolved from Agricultural to Industrial: 1725 1815
- Amoskeag Mills: Largest single mill in the world 1915
- Post Industrial Depression: 1935 1980's
- Revitalization: 1990 to Present
- Revitalization = "ManchVegas"

Background – Collection System

- 385 Miles of sewer
 - 50% combined system
 - 11,000 SMHs
 - 15 CSO outfalls
- 100 Miles of pipe
 - 100 years old or older

Background – Stormwater

- 180 miles of drains
 - -14,000 CBs
 - -3,000 DMHs
- 6 Urban Ponds

Background – Pump Stations

- 12 pump stations
- Constructed from 1973 to 2014
- 140 gpm to 42,000 gpm

Background – WWTP

- Serves 4 communities
 - Bedford
 - Goffstown
 - Londonderry
 - Manchester
- Metro pop. 172,000

• WWTP Flows: 26 mgd annual average

Background – WWTP

1975 26 MGD

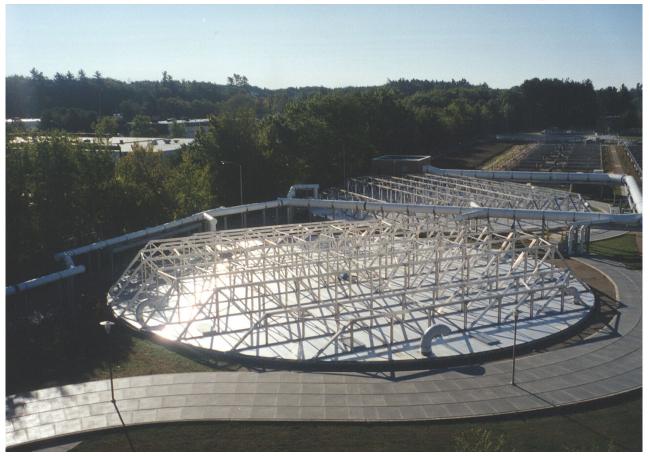
1994 34 MGD

2016 42 MGD

Other major upgrades over the past decade:

- 2006 Dewatering Upgrade
- 2010 Secondary Clarifier Upgrade
- 2011 Fluidized Bed Incinerator Upgrade
- 2013 Grit Upgrade
- 2016 Aeration Upgrade
- 2017 Boiler Upgrade



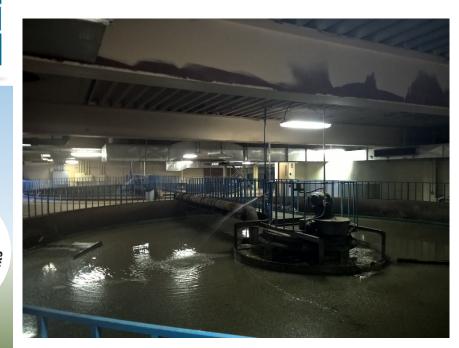

The City of Manchester is in the Middle of its \$75 Million WWTP CIP Now!

2010 Facility Plan

- Phase I
 - Grit 🖌
 - Aeration
 - Primary Clarifiers
- Phase II
 - Solids Train
 - Generators
 - Buildings

Primary Clarifier/Thickener Upgrade

Primary Clarifiers



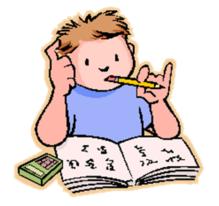
MANC

PROTECTION DIVISION

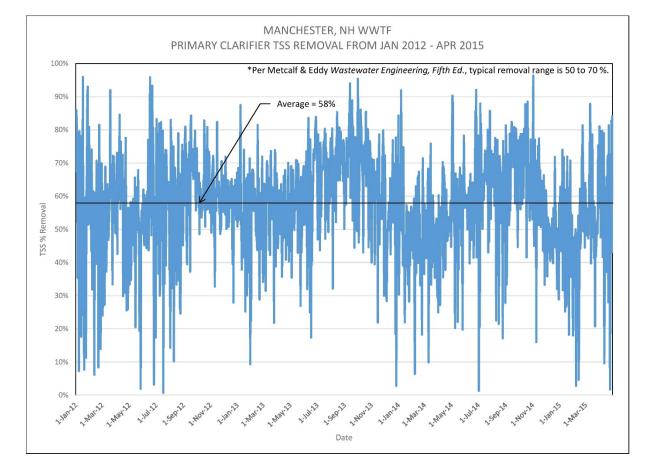
- Three 130-ft dia. concrete tanks w/ painted steel mechanisms
 - Two built in 1975
 - One built in 1993
- Center feed w/ double sided internal launder
- Conventional segmented plow blade sludge removal
- Covers added in 1998

Gravity Thickeners

MANC

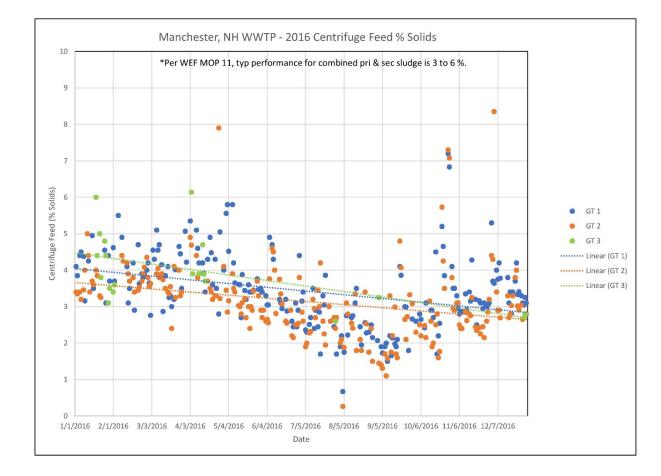

WT OF PUBLIC

- Three 50-ft dia. painted steel tanks w/ painted steel mechanisms
 - Two built in 1975
 - One built in 1993
- Center feed w/ single sided perimeter launder
- Conventional segmented plow blade sludge removal
- Open top tanks located in Ops Building


Study Phase

- Goals:
 - Perform a comprehensive upgrade
 - Achieve a 30+ year design life
 - Standardize equipment
 - Increase SCADA monitoring/automation
- Major Study Areas:
 - Performance
 - Hydraulics

T OF PU



Primary Clarifier Performance

Gravity Thickener Performance

Hydraulics

- Stress Testing:
 - Performed in conjunction with Clarifier Performance Evaluations, Inc. (CPE)
 - Tested Primary Clarifiers for
 - Hydraulic balance/performance/capacity
 - Tested units at average flows and storm flows
 - Collected visual, dye test and TSS data

Hydraulics

- Stress Testing Results:
 - Existing units/design still performed well after 40 years
 - Internal launder inboard vs outboard weir results similar
 - Short circuiting a concern at storm flows
- Stress Testing Recommendations:
 - A larger and deeper center well was recommended
 - Stick with internal double sided launder
 - No need to add EDI or DCB at this time

Design Phase

- Major Areas of Focus:
 - PC's
 - Effluent Launders
 - Scum Collection
 - GT's
 - Existing Steel Integrity and Repairs
 - Covers

FMANC

OTECTIO

DEPAR

PC Effluent Launders

• Internal double sided vs conventional perimeter

PC Effluent Launders

• Provide all new supports vs reuse existing anchor points

DEP

ENT OF PUB

PC Scum Collection

- Multiple skimmer arms
- Full surface skimming vs perimeter skimming
- Water flushing at scum trough

GT Steel Integrity

- Thickness Testing (Corrosion Probe, Inc.)
- Repair Methods

Photo No. 4 Wall of Thickener No. 1, under Skimmer Scum box, thin wall plate detected.

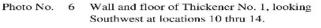
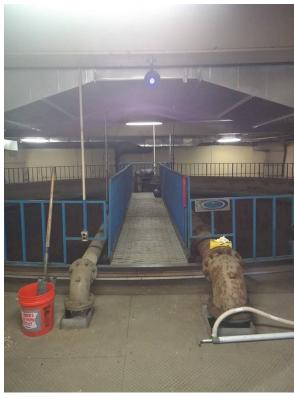


Photo No. 5 Center Column of Thickener No. 1, looking North at locations 10 thru 13.


Photo No. 7 Center Column of Thickener No. 1, looking South at locations 1 and 16 thru 20.

GT Covers

- Custom low profile design
- Odor control intake and discharge ports
- New blowers to existing scrubber

OFPU

- Key PC Construction Challenges
 - SS components (red residue/staining; twisted members)
 - Launder support attachment to wall
- Key GT Construction Challenges
 - Sand blasting showed new repair areas
 - Not all new welds water tight
 - Custom covers

MANC

PROTECTION DIVISION

DEPAR

PC SS components

- Red residue/staining
- Twisted members

PC Launder Supports

- Bolted attachment
- Welded attachment

GT Sandblasting/Welding

- Sand blasting showed new repair areas
- Not all new welds water tight

DEP

GT Custom Covers

- Expect the Unexpected
 - PC skimmer arm scraper blade tension spring lets go.....

- Expect the Unexpected
 - GT SBD loosens and contacts skimmer arm.....

- Expect the Unexpected
 - 6"x6"x2' PT block vs PC skimmer arm.....

• Expect the Unexpected

DEPA

• 20' deep PC influent sample line plug lets go.....

Project Summary

- Four year project from 2015-2018
- Total project cost:
 - \$1.4M Engineering
 - \$7.6M Construction
- Came in over original schedule but within original budget
- Upgraded PC's and GT's are performing well
 - PCs avg eff TSS percent removal = 67.7 %
 - Avg eff TSS concentration = 59.4 mg/L
 - GTs avg underflow solids = 4.2 %

Lessons Learned/Take Aways

- 1. Not all stainless steel is created equal
- 2. Going all new may actually save time and \$\$
- 3. Don't assume similar tanks match or that new equipment matches old equipment
- 4. Plan for post-sand blast re-inspection of steel

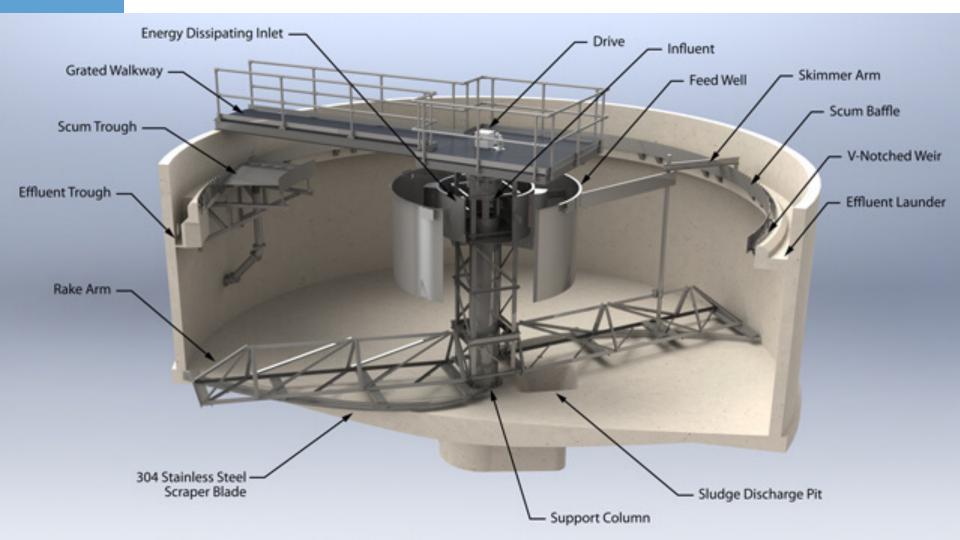
6. Expect the unexpected!

OF PU

 7. Collaborative approach with Engineer + Contractor + Owner = Success

Acknowledgements

- Manchester Environmental Protection Division Team
 - Frederick J. McNeill, P.E. Chief Engineer
 - Robert J. Robinson, P.E. Plant Superintendent
 - David St. Armand Chief Operator
 - Kirk Ray Maintenance Supervisor
 - Robert Morris Assistant Maintenance Supervisor
- Methuen Construction Co., Inc.
 - Richard Czerw Project Manager
 - Eric Delisle Assistant Project Manager
 - Donald Reynolds Superintendent



Thank You...

