Pump Station Upgrade for Improved Performance, Operations and Aesthetics

Lafayette Road Pump Station
Portsmouth NH
Outline

- Background
- City’s Vision
- Design for Performance and O&M
- Structural and Architectural Design
- Lessons Learned
- Costs
- Questions
City of Portsmouth

- NH Seacoast city of 22,000
- 100 miles of sewer
- 6 major pump stations
- 14 smaller pump stations
Existing Conditions

- 4.4 mgd pump station
- Built c1962
- Upgraded 1981, 2001
- Aging equipment
- Poor wet well access
- Commercial area sensitive to aesthetic and odor impacts
Existing Conditions

- Extended shaft pumps
- Defunct grinder
- Difficult wet well access
- Outdated electrical & controls
- Indoor generator
City’s Vision

- **High-Performance**
 - Capacity to handle peak & typical flows
 - Minimize ragging issues
 - Resilient and reliable

- **Simple to Operate & Maintain**
 - Easier wet well cleaning
 - Pump removal
 - Permanent bypass
 - Full SCADA monitoring
 - Outdoor generator
 - Lighting & ventilation

- **Aesthetically Appealing**
 - Architectural upgrade
 - Odor treatment
 - Pad-mounted transformer
Currently sized for 4.4 mgd

Previous projections called for 5.7 to 7.4 mgd of capacity.

Ongoing I/I work will reduce peak flows.

Minimal development
Capacity for Peak & Typical Flows

- Consider a small “jockey” pump for typical flows.
- Reduced energy cost
- Less wear & tear on impeller and bearings
- Reduced chance of ragging
- You need to have the space!
Capacity for Peak & Typical Flows

- Jockey Pump is more efficient at typical flows: 70% vs 56%
- Payback 8-13 years
- Access and removal was a concern
- Ultimately decided not to include
Easier wet well O&M

- Replaced section of floor with grating
- Added a dividing wall
- Added H₂S-resistant epoxy coating
Space Configuration

- NFPA 820 adds a challenge to upgrading existing wastewater facilities.
- Ventilate at high rates
 - or
- Explosion-proof equipment
- Add walls to separate spaces
Architectural Goals

Architectural Goals:

- Improve building aesthetics and “curb appeal”
 - Match Deer Street Pump Station
 - Solar lighting
 - Interior Painting
 - Handrails that meet code
- Improve energy efficiency
- Provide maintenance access (pump removal)
- NFPA 820 Gas-tight separation of spaces (intumescent collars on PVC pipes)
Before, During, After

After
Architectural Renderings

- Renderings
 - Aided in color selection
 - Helped with roof profile and dormer locations
 - Located several “faux” windows for symmetry
Pump Removal

- NFPA 820 Class 1 Division 2 electrical requirements
- Manual powered hoist and trolley have easily moved 2,000 lb pumps several times now
- Bridge crane allowed for increased maneuverability
- Upper level monorail, with access through door, tall enough to land pump on a 4’ tailgate
- Check head clearances with shop drawings
Analysis of Existing Structure

- Finite Element Analysis (FEA) of modified structure to meet current codes
 - wet well floor removal
 - Electrical equipment loads on upper slab
Reinforcement of Existing Structure

- International Existing Building Code (IEBC) requirements:
 - Level 1 Alteration (removal and replacement of existing items)
 - Level 2 Alteration (adding/removing openings)
 - Level 3 Alteration (> 50% of building area)
 - Requires complying with current IBC level wind and seismic provisions

- Original design vs current code loading requirements:
 - Original Design: ??
 - 2006 IBC w/ City of Portsmouth Amendments: 100 MPH 3-second wind gust, Seismic Design Category C (1% probability of collapse in 50 years)
Reinforcement of Existing Structure

- Building envelope changes
 - New roof profile
 - New openings
 - Taller walls
Field investigation confirmed unreinforced masonry

Check of existing masonry for out-of-plane bending/shear, and in-plane-shear with new roof diaphragm loads. **Not enough capacity to meet modern codes.**

Three-cell CMU issues and solutions
Reinforcement of Existing Structure

- Designed reinforcing scheme to satisfy current codes.
 - Reinforced piers integral to wall, no loss of interior space
 - Needed close coordination with louvers and windows
Lessons Learned

- New construction vs. retrofit
- More solar tubes
- Resilient hinged check valves
Project Financials

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Cost (Million Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer’s Estimate</td>
<td>2.95</td>
</tr>
<tr>
<td>Bids (March 2017)</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>4.22</td>
</tr>
<tr>
<td>Final Cost with CO</td>
<td>2.63 (2% CO)</td>
</tr>
</tbody>
</table>
Acknowledgements

- Mike Baker – Pump Station Manager
- Terry Desmarais, P.E. - City Engineer
- Norm Dugas – Resident Engineer
- PRB Construction – General Contractor
Questions and Answers

Lafayette Road Pump Station
Portsmouth NH
Capacity for Peak & Typical Flows