

transform your environment

welcome

PERFORMANCE OF AN MBBR + DAF AT A CRAFT BREWERY IN VERMONT

Presented by:

Michael Smith, P.E., Weston & Sampson

Daniel Dair, World Water Works

Co-Authors

Wish to thank the following people for their efforts in support of this presentation:

Steve Miller – Alchemist Brewing Company

Rob Trzepacz, P.E. – Technology Sales Associates, Inc.

Chandler Johnson – World Water Works, Inc.

Agenda

Section I: INTRODUCTION

Section II: MBBR + DAF TECHNOLOGY

Section III: ALCHEMIST BREWING & WWTP RESULTS

Section IV: CONCLUSIONS

THE ALCHEMIST BREWING COMPANY

What is Craft Brewing?

- Craft brewers are *small* brewers yet currently make up 14% of the beer market & shows continued growth.
- The hallmark of craft beer and craft brewers is *innovation*.
- Craft beer is generally made with traditional ingredients like malted barley; interesting and sometimes *non-traditional ingredients* are often added for distinctiveness.
- Craft brewers tend to be very *involved* in their communities through philanthropy, product donations, volunteerism and sponsorship of events.
- Craft brewers have distinctive, individualistic approaches to *connecting with their customers*.
- The majority of Americans live within 10 miles of a craft brewer.

THE ALCHEMIST BREWING COMPANY

- Building new brewery
- Domestic discharge requirements were goal for new WWTP
- Town requested State of Vermont involvement
- Pilot study required to prove concept

Brewery Wastewater Production

- Basic Guidelines
 - Well managed brewery: 2 bbl ww / bbl of beer brewed (Alchemist HERE)
 - Moderately well managed brewery: 3 bbl/bbl
 - Not well managed / no water conservation: 4 bbl/bbl
 - Start up breweries: 5+ bbl/bbl

PARAMETER	BREWERY WASTEWATER DISCHARGE REQUIREMENTS
FLOW	4608 GPD
pH	6.5 – 8.0 SU
Biological Oxygen Demand (5-day)	300 mg/l (11.5 lbs/day)
Total Suspended Solids	300 mg/l (11.5 lbs/day)
Total Phosphorus	5 mg/l (0.2 lbs/day)
Ammonia	25 mg/l (1.0 lbs/day)
Dissolved Oxygen	>2.0 mg/l

Brewery Wastewater – What's in it??

- Spent Grains
- Yeast
- BOD 2,500 3,000 mg/L (poor management >10,000 mg/L)
- TSS 500 1,000 mg/L (poor management >8,000 mg/L)

• pH – 5 - 6

Brewery Wastewater Production

Internal Best Management Practices:

- First rinse management system
- Condensate diversion
- Primary solids separation
- Goal is to knock down strength prior to biological system for stable operations.

Brewery Wastewater Treatment Selection

- Evaluated multiple biological technologies
- Anaerobic not cost effective at low flows
- MBBR was chosen:
 - ✓ Footprint
 - ✓ Buffering capacity
 - ✓ Reliability
 - ✓ Flexibility
 - ✓ Ease of Operation

Agenda

Section I: INTRODUCTION

Section II: MBBR + DAF TECHNOLOGY

Section III: ALCHEMIST BREWING & WWTP RESULTS

Section IV: CONCLUSIONS

Components to the Aerobic MBBR Treatment System

MAJOR COMPONENTS

- Media
- Stainless Steel Aeration
 - System
- Stainless Steel Sieve
 - Assemblies
- Tank
- Blowers

Operation of the MBBR Process

- 1) Aeration for oxygen & mixing in BOD & nitrification
- 2) Slow speed mixers for mixing in post-denitrification applications
- 3) Screens used to retain media in each reactor
- 4) Multiple reactors used to specialize bacteria for each application

Alchemist Brewing MBBR

Ideal DAF[™] Dissolved Air Flotation

Unique Design Features

- Progressive Water Extraction
- Cross Flow Design
- Polypropylene Design
- DAG[™] Microbubbles
- Advanced Pipe Flocculators
- High Performance
- Low Operational Costs
- Maximum Longevity
- Small Footprint

Benefits

Ideal DAF[™] Dissolved Air Flotation

- Progressive Water Extraction
- Cross Flow Design
- Plate Separators
- Polypropylene Design
- Cone Bottom Sludge Removal
- DAG[™] Microbubbles
- Sludge Thickening Beach™
- Advanced Pipe Flocculators
- High Performance
- Low Operational Costs
- Maximum Longevity
- Small Footprint

Benefits

Unique

Design

Features

Ideal DAF[™] - Dissolved Air Generator System

Design Features	 5 - 12 Micron Bubbles (95%) 90%+ Saturation Efficiencies Super Duty Construction Robust Design No Compressed Air Requirement 	
Benefits	 Consistent Improved Performance Reduced Energy Requirements Lower Chemical Consumption Low Operational Costs Low Maintenance 	
	DAG [™] Pump 30 HP Model Shaft (28 lbs) Competitor Pump 30 HP Model Shaft (1 lbs)	wat

.....

Proving MBBR Technology – MBBR Pilot Test

- Pilot System
 - Flow Rate: 0.4 gpm
 - Volume: 580 gallons
 - HRT: 24 hours
- Original Influent Design Conditions:
 - BOD: 1,850 mg/L
 - COD: 3,000 mg/L
 - TSS: 86 mg/L
- Ran for 1 month on already seeded media

Proving MBBR Technology – MBBR Pilot Test

- Lessons Learned for Full Scale Design
 - Buffering capacity
 - Nutrients are key (N&P)
 - Foam Control
 - Primary Solids Removal
 - Will need to truck effluent until permit can be met by new system

Agenda

Section I: INTRODUCTION

Section II: MBBR + DAF TECHNOLOGY

Section III: ALCHEMIST BREWING & WWTP RESULTS

Section IV: CONCLUSIONS

Alchemist Brewing

Alchemist Brewing WWTP Process Flow Diagram

Alchemist Brewing WWTP

Alchemist Brewing WWTP

orld water works Clean Water and Energy from Wastewate

Alchemist Brewery Full Scale Design

Parameter	Design Value	Units	Influent	Effluent
Average Design Flow	Average Design	GPD	2,400	
Max Month Design Flow	Average Design	GPD	2,800	
Peak Design Flow	Average Design	GPM	20	
Total BOD₅	Average Load	mg/L (lb/day)	2,900 (58)	< 300 mg/L
	3 Day Peak Load	mg/L (lb/day)	4,800 (112)	
TSS	Average Load	mg/L (lb/day)	277 (6)	<300 mg/L
	3 Day Peak Load	mg/L (lb/day)	100 (87)	
рН	Range	pH Units	6-8	
Temperature	Minimum	°C	15	
	Maximum	°C	30	
MBBR Effluent Soluble BOD ₅ *	Concentration	mg/L	2,600 – Average 4,300 - Max	<100 mg/L

Clean Water and Energy from Wastewate

orld mater morks Clean Water and Energy from Wastewet

Clean Water and Energy from Wastewet

	FLOW	BOD	BOD	TSS	TSS	TP	TP
Monthly Avg	Gallons/day	mg/L	lbs./day	mg/L	lbs./day	mg/L	lbs./day
TARGETS	(2,800 gpd)	(300 mg/L)	(11.5 lb/day)	(300 mg/L)	(11.5 lb/day)	(5 mg/L)	(0.2 lb/day)
September-16	1,949	7.70	0.21	44.50	1.62	0.07	0.003
October-16	1,697	31.53	0.55	22.00	0.47	0.06	0.001
November-16	1,692	15.58	0.26	19.50	0.24	0.10	0.001
December-16	1,312	73.25	0.87	34.50	0.37	0.32	0.003
January-17	1,368	52.00	0.61	45.00	0.45	1.15	0.013
February-17	1,467	39.25	0.46	38.50	0.39	0.82	0.009
March-17	1,378	9.86	0.10	9.50	0.09	1.13	0.012
April-17	1,539	39.25	0.52	24.50	0.24	0.33	0.004
May-17	1,233	32.50	0.26	27.00	0.27	2.13	0.016
June-17	1,260	6.90	0.07	10.00	0.12	0.92	0.007
July-17	1,174	8.85	0.09	14.00	0.12	0.92	0.007
August-17	1,259	4.80	0.04	18.50	0.19	1.45	0.016
September-17	1,232	6.73	0.08	14.00	0.19	0.81	0.008
October-17	1,286	5.05	0.06	11.05	0.13	1.04	0.012
November-17	1,064	5.03	0.05	11.00	0.10	0.84	0.007
December-17	1,129	6.58	0.06	9.00	0.08	0.93	0.009
January-18	1,288	3.88	0.03	9.50	0.08	0.43	0.004
February-18	1,308	4.70	0.05	9.00	0.11	1.08	0.013
March-18	1,224	4.03	0.04	8.00	0.09	1.91	0.021
April-18	1,186	5.27	0.05	8.00	0.08	0.84	0.009
May-18	1,339	11.68	0.10	13.00	0.12	0.93	0.011
June-18	1,096	11.57	0.13	12.50	0.14	1.79	0.017
July-18	1,397	4.30	0.05	14.00	0.13	2.11	0.025
August-18	1,259	4.80	0.04	18.50	0.19	1.45	0.016
September-18	1,335	6.80	0.07	13.50	0.12	1.32	0.016
October-18	1,419	4.60	0.07	9.50	0.08	1.31	0.016
November-18	1,241	5.65	0.06	8.00	0.07	0.49	0.004
December-18	1,255	3.83	0.04	10.00	0.09	0.26	0.003

Weston(& Sampson

Jorld water works Clean Water and Energy from Wa

Agenda

Section I: INTRODUCTION

Section II: MBBR + DAF TECHNOLOGY

Section III: ALCHEMIST BREWING & WWTP RESULTS

Section IV: CONCLUSIONS

Conclusions

- Flow EQ needed due to intermittent waste generation
- Additional EQ in design for brewery containment
- Primary settling of solids
- Installation of bypass for re-circulation
- Anti-foam / Nutrient feed systems
- Nikuni pump dissolved enough oxygen to meet effluent DO limit
- System exceeds effluent requirements for all parameters

Operational Modifications

- Flow EQ needed due to intermittent waste generation
- Splitter for de-foamer to control foam in both stages
- DrumQuick fittings for improved air quality
- Auto-dialer for alarms
- PD pump replaced centrifugal for forward flow control
- Installation of degassing chamber after DAF for flow measurement

thank you- Any Questions?

- Michael Smith, P.E. (802) 238-6401
- Email: <u>smithm@wseinc.com</u>

Weston & Sampson

- Daniel Dair (405) 943-9000
- Email: dair@worldwaterworks.com

transform your environment