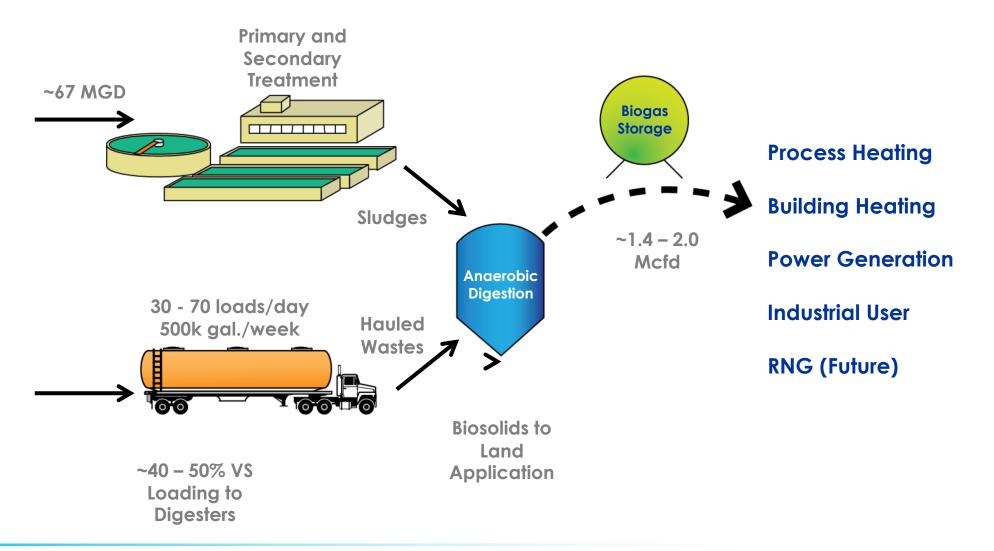
Next Generation Resource Recovery

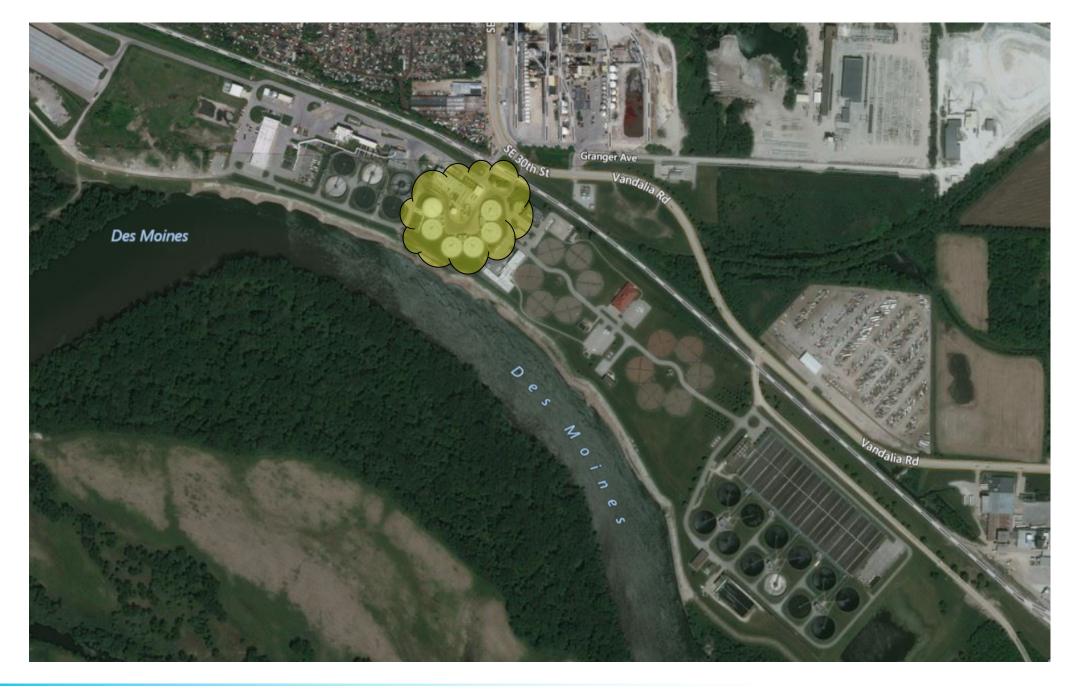
Co-Digestion to Renewable Natural Gas (RNG) Pipeline Injection

Dustin Craig, PE

January 30, 2019


NEWEA – 2019 Annual Conference & Exhibit 🛛 🔊

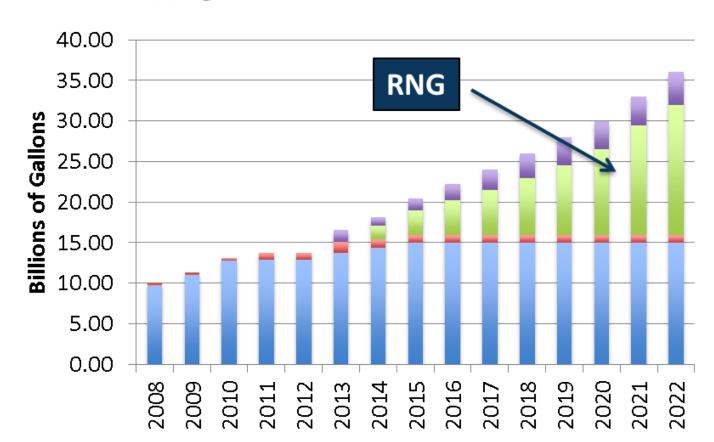
Des Moines Wastewater Reclamation Authority (WRA)


- WRA Serves 17 member agencies in three counties
- City of Des Moines is the contract operator of the WRA's wastewater reclamation facility (WRF)
- Average dry-weather flows of ~67 million gallons per day (MGD)
- Serves ~500,000 residents in greater metro Des Moines area
- Mission Statement Preferred hauled waste facility for Iowa and surrounding areas
- Completed \$20M Anaerobic Digestion Improvements Project in Spring 2014

Des Moines WRF Flow Schematic

A Wastewater and Hauled Organic Waste Treatment Center

Project Drivers


- WRA is producing a significant amount of renewable fuel in digesters
- Capacity to increase biogas production with more hauled waste
- Changes in federal legislation are establishing renewable fuel standards, particularly for use in transportation fuels
- Environmental impacts of biogas
 - RNG production is carbon-neutral (does not add to greenhouse gas emissions)
 - Reduces consumption of natural gas, thus lowering CO₂ emissions
- Supports sustainability initiatives and goals of City of Des Moines and WRA

NEWEA – 2019 Annual Conference & Exhibit

RFS Program Opportunities

- Renewable Fuel Standards (RFS) program
- Renewable transportation fuels
- Renewable Identification Numbers (RINs)
- Low Carbon Fuel Standard (LCFS) credits

RFS

Renewable Identification Numbers (RINs)

Average basket of credit values (D3 RINS + LCFS) since 2014 per MMBtu

- RINs and renewable fuel credits
- RIN classifications by fuel type ("D"-codes)
- D3 RINs (municipal wastewater)= High Value

NEWEA – 2019 Annual Conference & Exhibit

D5 RINs (organic waste) = Low Value

Development of Bioenergy Model

Financial Inputs		Process Information					20-Year Economics, Present Value				
Electricity Cost, \$/kwh	\$0.0616		PSA 1500	PSA 2250	WS 1500	WS 2250		PSA 1500	PSA 2250	WS 1500	WS 225
Natural Gas Purchased, \$/MMBtu	\$6.86	% Recovery	95%	95%	98%	98%	Capital	\$9,855,000	\$11,921,000	\$9,475,000	\$12,08
Labor, \$/hr	\$60	Sales Gas %CH ₄	97%	97%	96.2%	96.2%	Total Annual Costs	\$36,304,000	\$52,772,000	\$33,288,000	\$36,66
Water, \$/100 gal	\$0.40	Sales Gas HHV, BTU/cf	980	980	970	970	Total Annual Revenue	\$100,162,000	\$103,050,000	\$98,914,000	\$99,78
Lube Oil, \$/gal	\$15	Water, gpm	0	0	2.7	4.4	20 Year Overall Revenue	\$54,003,000	\$38,357,000	\$56,151,000	\$51,03
Polymer, \$/5 gal	\$700	Connected Load, hp	948	1294	842.9	1216.3	Payback Period, months	37	57	35	
Air Emissions Fee, \$/ton	\$56	Natural Gas, MMBtu/day	48	72	0	0					
Discount Factor	5%	Polymer, gal/yr	0	0	5	7.5	A 19 19	ual Revenue (Composicon		
RIN Inflation, %/yr	5%	Compressor Heat Recovery, MMBtu/hr	0	0	0.0	0.0	Annu	lai Kevenue (comparison		
Utilities Inflation, %/yr	5%	Tail Gas Heat Recovery, MMBtu/hr	3.4	5.1	0.0	0	\$6,000,000				
Labor Inflation, %/yr	5%	Lube Oil, gpd	Include	ed below	4	6.5	ćr. 000.000				
Maintenance Inflation, %/yr	5%	Preventative Maintenance, \$/yr	\$72,000	\$91,260	\$50,500	\$50,500	\$5,000,000				
MidAmerican Tariff Inflation, %/yr	5%	Labor, hr/yr	0	0	0.0	0.0	\$4,000,000				
Air Emissions Fee Inflation, %/yr	5%	Downtime, hr/yr	0	0	0	0					
David Gar David							\$3,000,000				
Raw Gas Data	CEN/	ini	tial Investmen		14/5 4 5 0 0	14/5 2250	\$2,000,000				
Raw Gas, %CH ₄	65%		PSA 1500	PSA 2250	WS 1500	WS 2250					
Raw Gas, H2S ppmv	4000	Equipment Capital, \$	\$2,350,000	\$3,042,000		##########	\$1,000,000				
Raw Gas Flow Growth, %	0%	Thermal Oxidizer, \$	\$497,000	\$643,351	\$350,055	\$477,696	\$0				
Sales Gas Economics		See "Capital" tab for more details					Total Revenue	MidAmerican	RIN Revenue	Heat Recove	ery Credit
Renewable Gas Sold, \$/MMBtu	\$5.00						PSA 1500 SCFM PSA 2250 SC	CFM 🔲 Water Scrubb	er 1500 SCFM 🗖 Wa	ater Scrubber 225	0 SCFM
Monthly Customer Charge, \$/month	\$1,315										
Commodity Charge, \$/therm transported	\$0.00495		Gas Flow								
Demand Charge, \$/MDR therm/month	\$0.52886										
		3000					Biogas Productio	on Growth vs	. 20-Year Pre	sent Value	
Environmental Attributes		3000					\$130,000,000				
RIN Value, \$/RIN	\$0.65						\$130,000,000				
RIN Conversion, RIN/MMBtu	11.727	2500					9 this and and				
RIN Value, \$/MMBtu	\$7.62						n \$110,000,000				
							L L				
Percent of Gas Accepted		≥ 2000					8 \$90,000,000				
1500 SCFM System	99.1%	N 2000					Star Star Star			• • • • • • • • • • • • • • • • • • •	
2250 SCFM System	100.0%	141	<u>A</u> .			الم	\$70,000,000				
					50,000,000						
					N \$30,000,000						
					\$30,000,000						
					0 10 2	20 30 40		70 80 9	0 100		
		500				Biogas Pro	duction Growth,	%			
		Unused Gas 🛛 2250 SCFM System 🔄 1500 SCFM System									

WS 2250

\$12,086,00

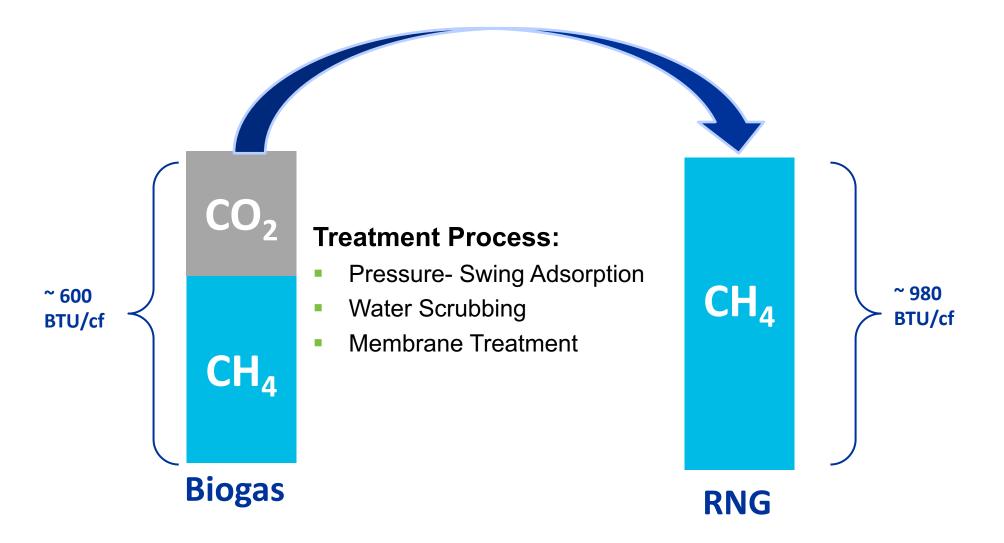
\$36,665,00

\$99,784,000

\$51,033,000

System Design Criteria

Inlet Biogas Flow: 2250 SCFM


Component	Digester Gas	Pipeline Specification	
BTU Content	~660 BTU/scf	> 970 BTU/scf	
Carbon dioxide	35%	< 3% by volume	
Nitrogen	0.7%	< 4% by volume	
Total Inerts ($N_2 + CO_2$)	~36%	< 5% by volume	
Oxygen	<0.2%	< 0.3% by volume	
Water	Saturated	< 5 lb/mmscf	
Hydrogen sulfide	Actual: 50-600 ppm Design: 6,000 ppm	< 0.25 grain/Ccf	
Total Sulfur	N/A	< 20 grain/Ccf	
Volatile Organic Compounds	10-30 ppm 0 ppm		

RNG System - Technology Comparison

Biogas → Renewable Natural Gas (RNG)

Membrane Scrubbing System

System Description

- Utilizes physical diffusion process through membranes which use a thin polymer film.
- Membrane selectively retains CH₄ and some N₂ (~20%) and O₂ (~50%)
- Generates very high quality CO₂ outlet stream with approximately 1-2% CH₄

Typical Components

- Compressor
- Gas Heat Exchanger / Moisture Removal
- Air Chiller
- H₂S Scrubbing System
- Siloxane Carbon Filters (if necessary)
- Final Polishing Filters
- Separation Membranes

Membrane Scrubbing System

Manufacturers

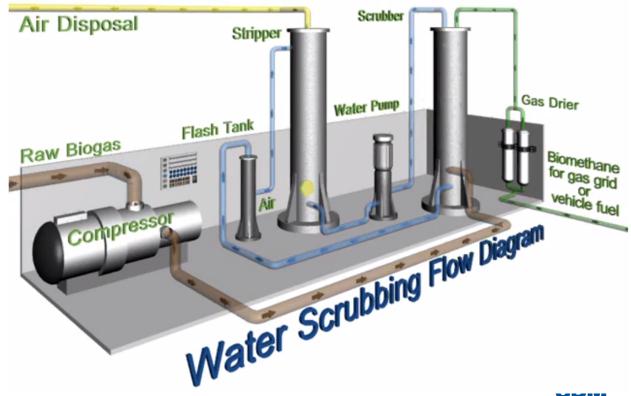
- Air Liquide Advanced Separations Newport DE
- Utilize Evonik Membranes: DMT Environmental Solutions (Joure, Netherlands), Unison Solutions (Dubuque, Iowa), Greenlane (New Zealand, USA), Hitachi Zozen, Brightbiomethane, Envitec

Advantages

- High CH₄ recovery (97-99.5%)
 - Depending on the number of stages
- High level of turndown (~10%)
- Can remove some O₂ (~50%) and N₂ (~20%)
- Dry process
- Modular Process

Disadvantages

- Limited (but growing) US Installation History
- H₂S and siloxane pretreatment required (depending on supplier)
- Limited data on membrane life and fouling


Water Scrubber System

System Description

- Separation by physical adsorption in scrubber
- Water is transfer solvent; performance follows Henry's Law-CO₂ is more soluble in water than CH₄
- Upflow packed towers with polypropylene media
- Solvent regenerates in stripping tower

Typical Components

- Compressor
- Scrubber Vessel
- Flashing Vessel
- Stripping Vessel
- Compressor Radiator Skid
- PSA/TSA Adsorber (gas drier)
- Process Water Chiller

Water Scrubber System

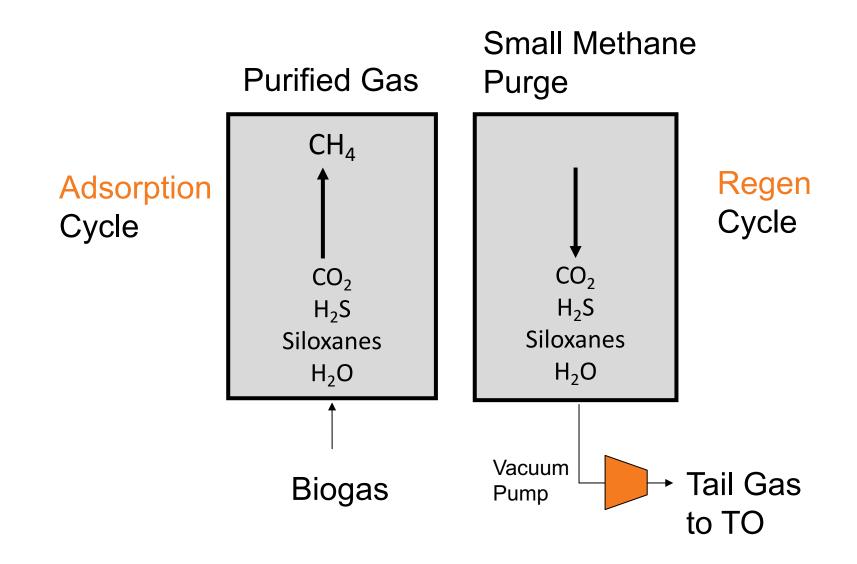
Manufacturers

- Greenlane (New Zealand, USA)
- DMT (Netherlands, USA)
- Malmberg (Sweden)

Advantages

- Proven technology Non-toxic solvent (water)
- Also removes H₂S in inlet biogas
- Moderate CH₄ losses (~2% slip)

Disadvantages


- Increases / Concentrates H₂O, O₂, and N₂
- Tail gas treatment is typically required
- Very tall outdoor vessels

Pressure Swing Absorption (PSA) Flow Schematic

Pressure Swing Adsorption (PSA)

• System Description

- Biogas is pressurized to flow up through the adsorption vessels
- Contaminants are trapped by media designed to not capture CH₄
- Vacuum is applied to depressurize (i.e.; pressure swing) after adsorption to purge contaminants from vessel in tail gas stream
- Process is batch but use of multiple vessels and rotary valve allow continuous flow

Typical Components

- Compressor
- Water Separator
- Air Fan Cooler
- Adsorber Vessels and Valve Skid
- Vacuum Pumps
- Buffer Tanks

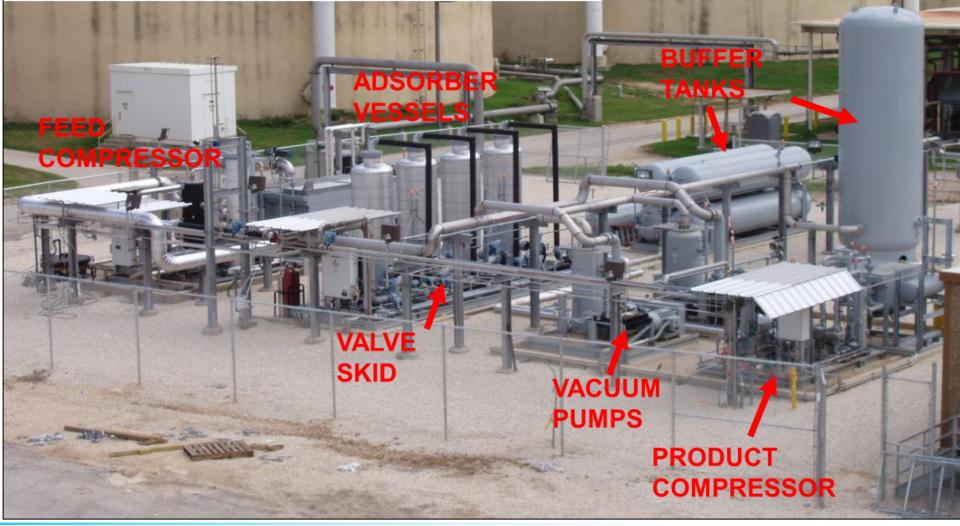
Zeolite Media

Pressure Swing Adsorption

Manufacturers

- Guild Associates Inc. (Dublin, Ohio)
- Xebec Adsorption Inc. (Quebec, Canada)

Advantages


- No H_2S pretreatment required for <6,000 ppm (Guild only)
- Simple, one step, dry process that is proven technology
- Media is regenerative
- Spare parts are generic. Can be serviced by plant operators or local mechanic

• Disadvantages

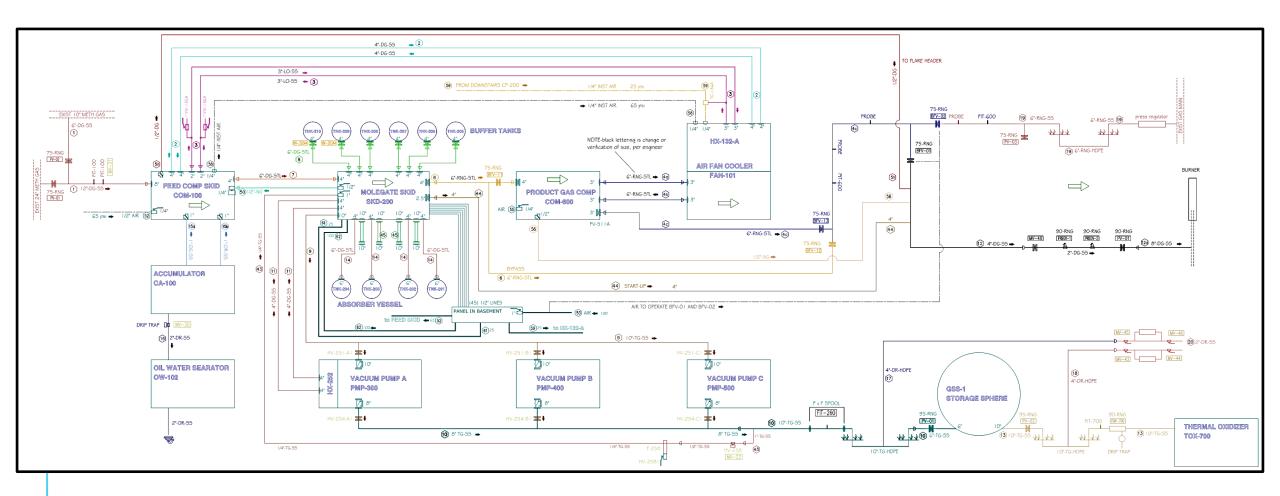
- Methane recovery is lower (92-95%)
- Additional PSA vessels required for O_2/N_2 removal if air is in the biogas
- Tail gas treatment is required

Guild Molecular Gate PSA System San Antonio, TX (through Ameresco) Digester (Waste Water Plant) 1300 SCFM (2100 nm3/hr) Feed Product to Pipeline Quality (98% Methane)

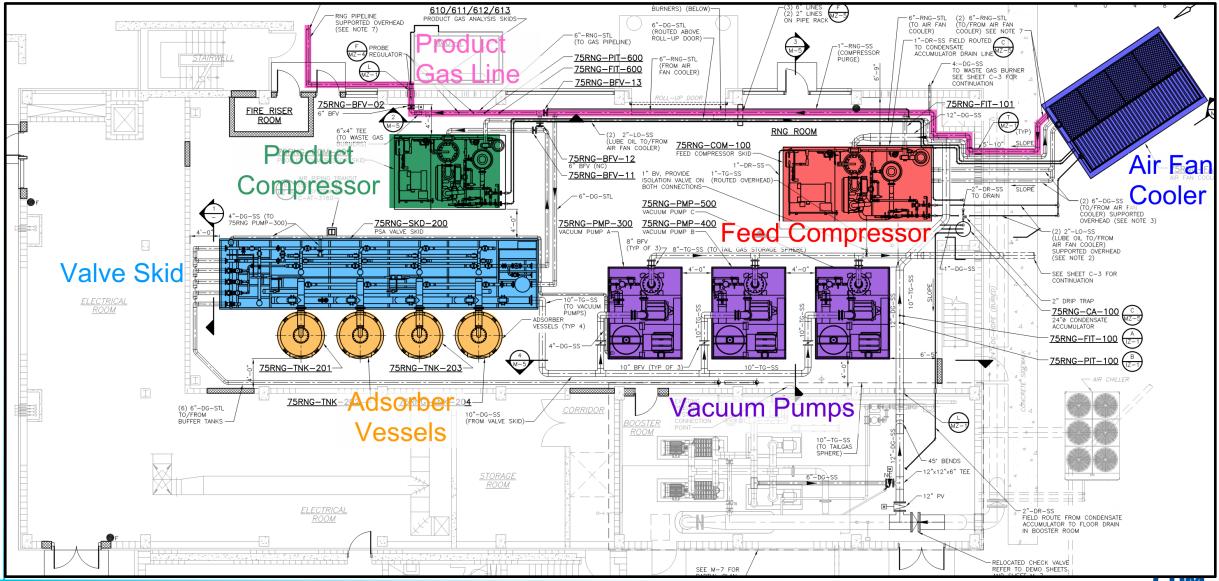
Technology Comparison & Selection

Hydrogen Sulfide Considerations

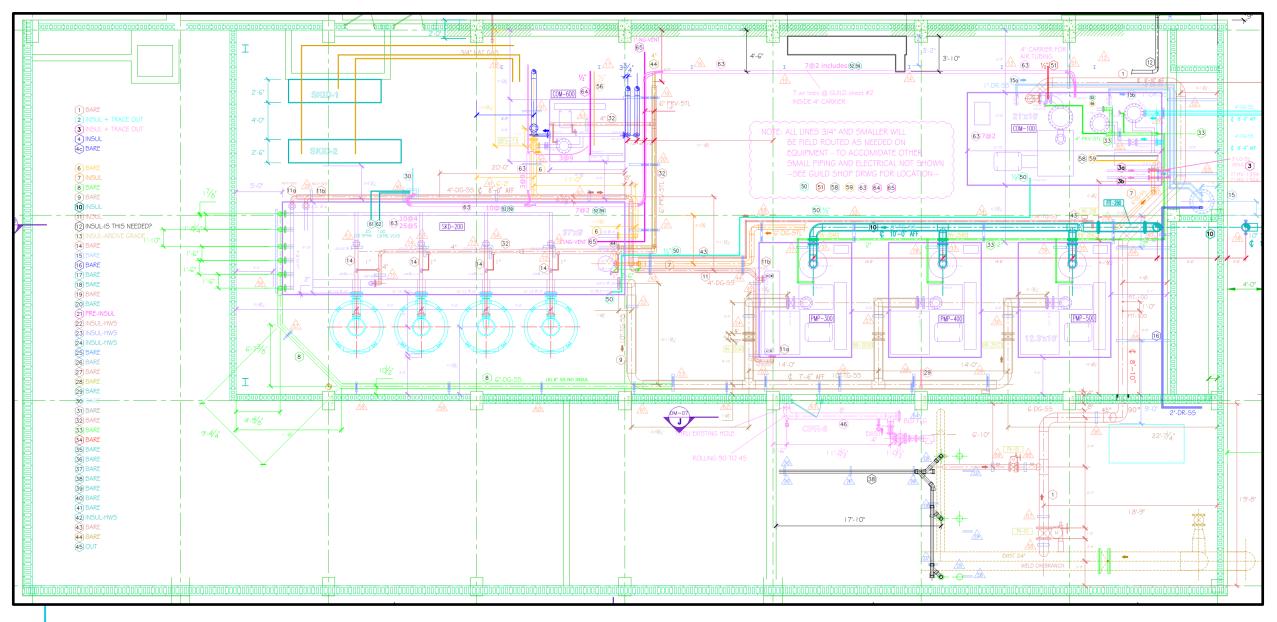
- Membranes: typically pre-treatment required
- Water Scrubber: maximum inlet ~2,500 ppm H₂S
 - Tail gas treatment required (biofilter or RTO)
- PSA: maximum inlet ~ 6,000 ppm H_2S
 - Tail gas treatment required (TO)

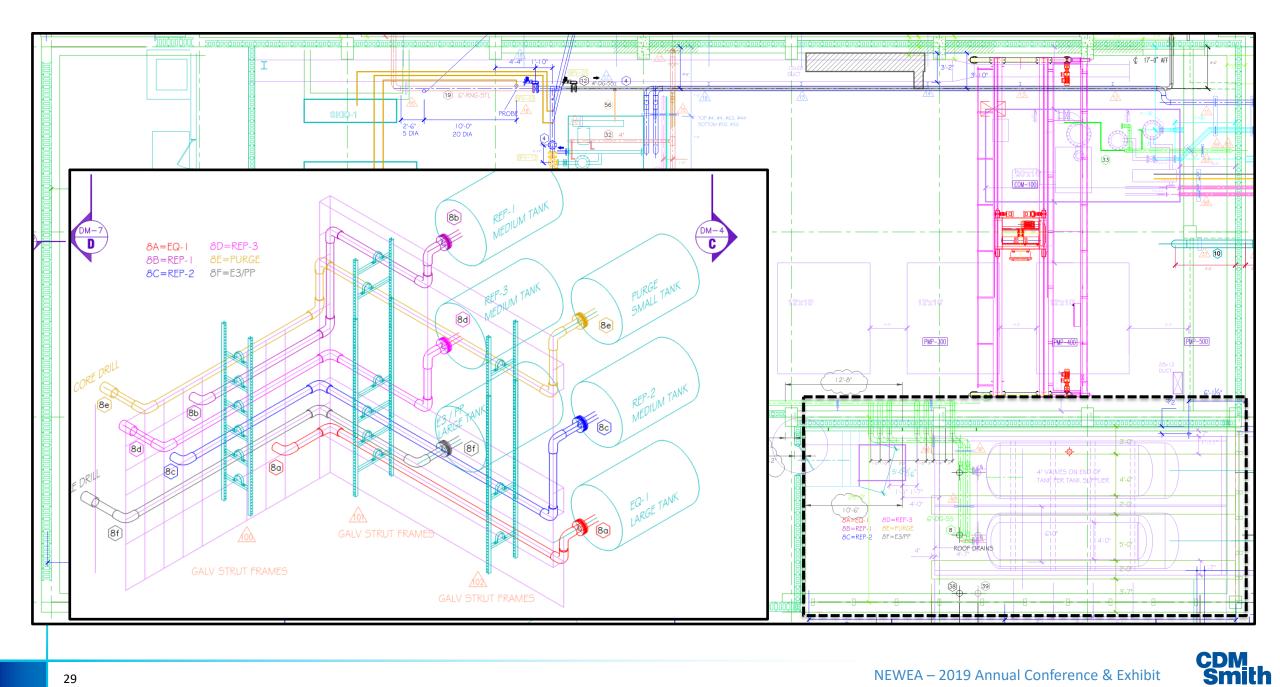

System Recovery Performance

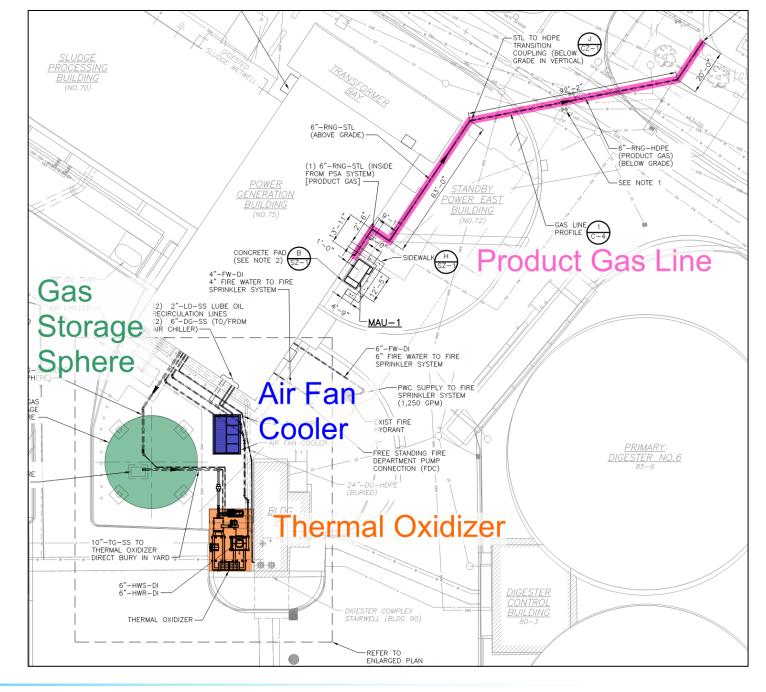
- Membranes: high methane recovery
- Water scrubber: high methane recovery, increases oxygen
- PSA: lower methane recovery
- Technology Selection:
 - PSA System
 - Capacity of 2,250 scfm inlet biogas flows
 - Thermal Oxidizer with heat recovery


Project Design

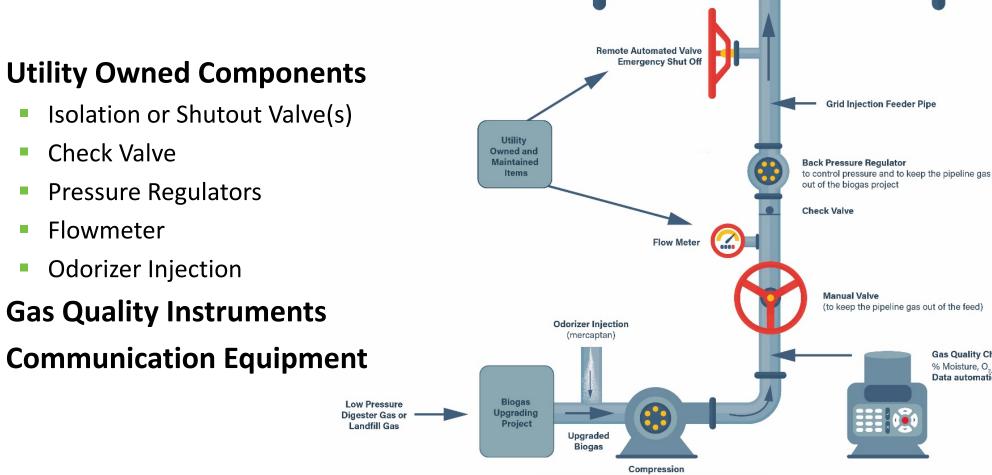
System Flow Schematic




System Layout



Site Plan


NEWEA – 2019 Annual Conference & Exhibit

Pipeline Injection Components

Biogas Injection Into Pipeline

Typical Controls Arrangement

High-Pressure Pipeline

(compress to pressure higher than the pipeline pressure)

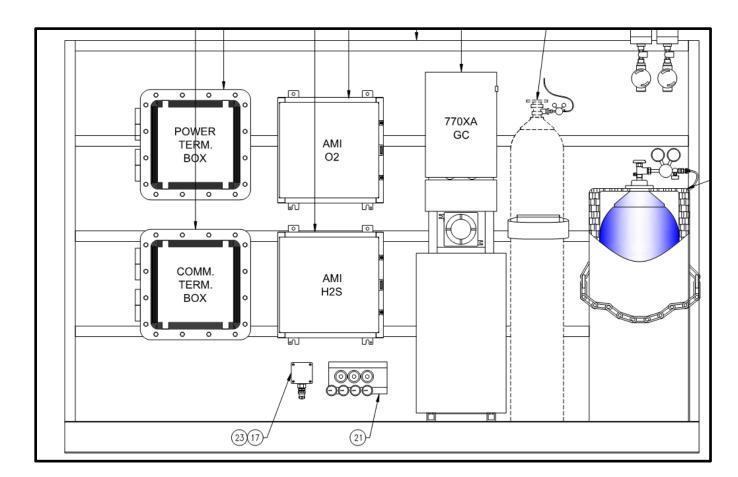
CDN

Smith

(to keep the pipeline gas out of the feed)

Gas Quality Checking

% Moisture, O, CO, H,S, N, Gas Chromatograph, etc. Data automatically is sent regularly to utility

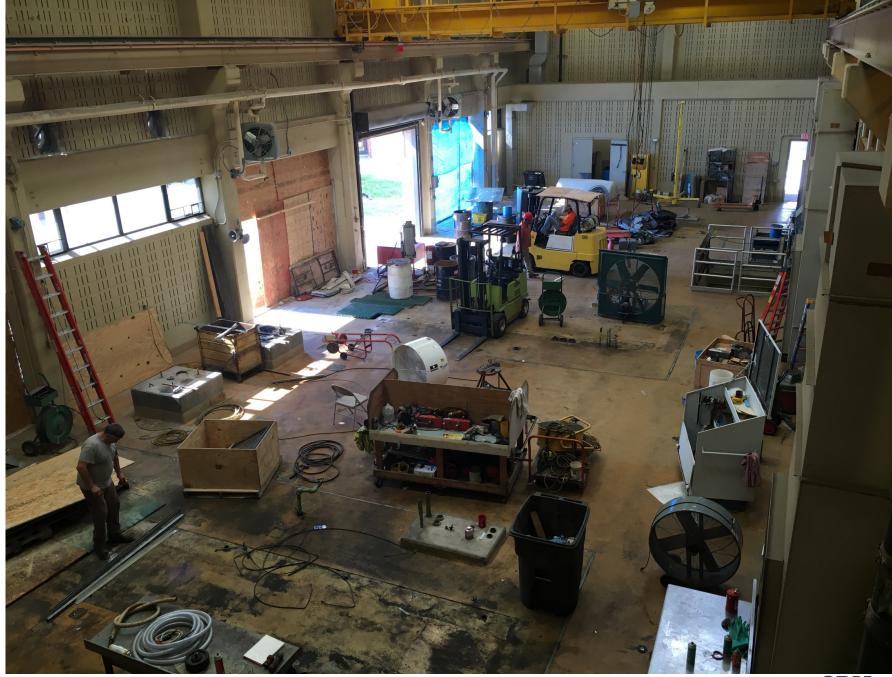

Grid Injection Feeder Pipe

Manual Valve

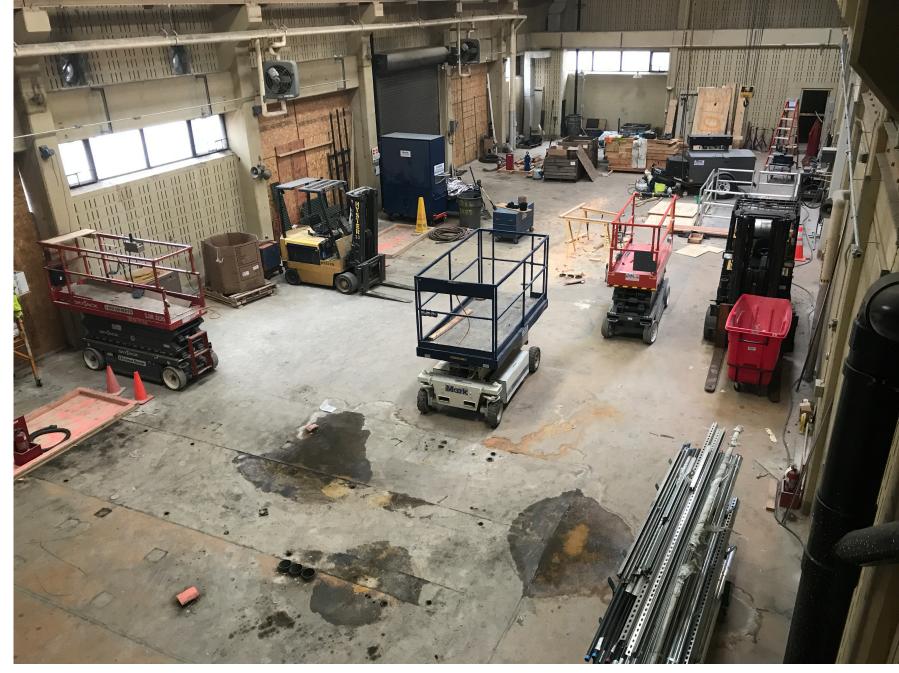
Gas Quality Instruments

Continuous Measurement

- Pressure
- Flow
- Gas Chromotgraph
 - CH4, CO2, O2, N2
- Oxygen
- Hydrogen Sulfide
- Moisture
- Carrier / Calibration Gas Bottles
- Fully Redundant Instruments



- Demolish (3) 600 Kw
 Superior Engines
- Engines installed 1987
- Heat Recovery
- Installed within an 'Unclassified' Bldg.

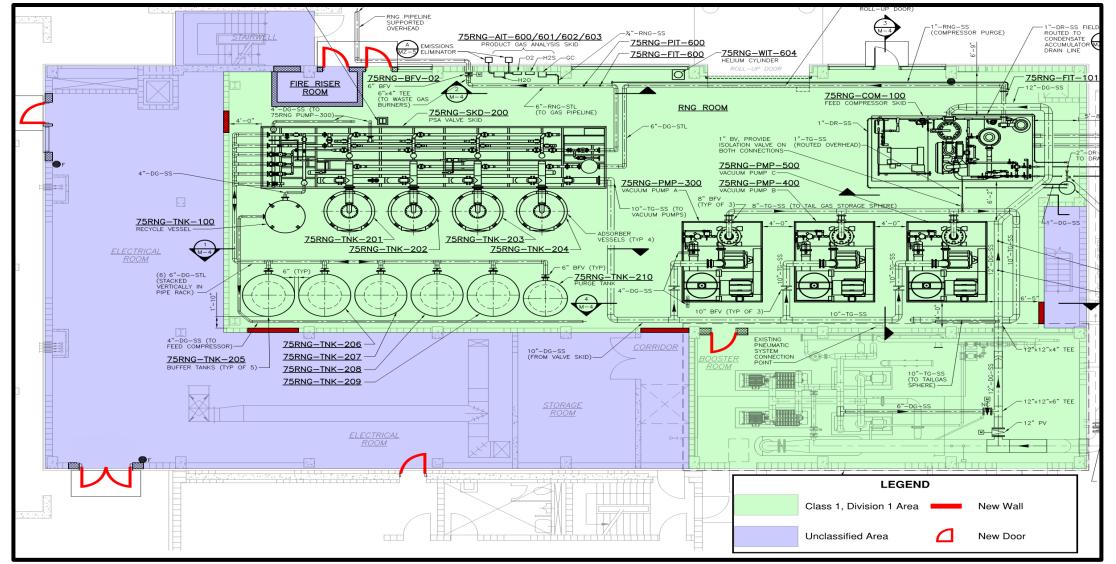


- Demolish (3) 600 Kw
 Superior Engines
- Engines installed 1987
- Heat Recovery
- Installed within an 'Unclassified' Bldg.

- Demolish (3) 600 Kw
 Superior Engines
- Engines installed 1987
- Heat Recovery
- Installed within an 'Unclassified' Bldg.

Area Classification & Building Modifications

 NFPA defines requirements of "Digester Gas Processing Rooms" involving biogas compression, handling, and processing equipment


Row	Location and Function	Ventilation Rate	Extent of Classified Area	NEC Area Electrical Classification	Material of Construction & Fire Protection Measures ⁽²⁾
Row 18a	DIGESTER GAS PROCESSING ROOMS (Gas compression,	No ventilation or ventilated at less than 12 air changes per hours	Entire room	Class 1, Division 1, Group D	NC, CGD, H, FE
	handling, and	Continuously ventilated at 12	Within 1.5m (5-	Class 1, Division 1,	NC, LC, CGD, H, FE
Row 18b	processing)	air changes per hour	ft) of equipment	Group D	
Row 18c		Continuously ventilated at 12 air changes per hour	Entire Room	Class 1, Division 2, Group D	NC, LC, CGD, H, FE

NC – Noncombustible Material; LC – Limited-combustible material; CGD – Combustible Gas Detection System;

H – Hydrant Protection; FE – Portable Fire Extinguisher

NEWEA – 2019 Annual Conference & Exhibit

Building Area Classification Plan – 1st Floor

Project Status:

- Bid Opening was May 1st, 2018
- Construction Capital Costs ~\$14M
- RNG System Arrives Onsite
 - Late Feb. Mid May
- RNG System Startup: Q4 of 2019
- Anticipated Project Payback of ~4-5yrs
- Currently considering both long and short term RIN contracts

Questions!

Water Partnership with **CDM**

Dustin Craig, PE 816.877.4802 craigdl@cdmsmith.com

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

Biogas Risk Assessment Methodology

- Conservative, Moderate and Aggressive risk scenarios
- Risk analysis and sensitivity to changes in RIN value

	Conservative	Moderate	Aggressive	Current Conditions
D3 RIN Value, \$/RIN	\$0.50	\$2.50	\$3.20	\$2.60
D5 RIN Value, \$/RIN	\$0.25	\$0.70	\$1.25	\$0.75
LCFS – Carbon Trading Price, \$/MT	\$0	\$75	\$175	\$125

