

Inflow and Infiltration Removal

Three communities, three approaches.

Presented by Chris Henry, PE

Mott MacDonald

Three Communities

Geographic Location

Mott MacDonald |

Why Remove Inflow and Infiltration (I/I)

Consent Order

Residential Complaints

Reduce Treatment Costs

Maintenance Program

System Capacity

Tap Restrictions

Why Remove Inflow and Infiltration (I/I)

2

Community Approach

Franklin Township

New Kensington

Lower Burrell

З

Proactive investigation to known hydraulic overloads.

Consent order to reduce CSO and eliminate SSO's system wide Consent order to eliminate SSO's system wide

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Mott MacDonald /

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Mott MacDonald /

System Mapping

Know your system!

Pipe size and material

Locations of manholes

Depths of manholes

Connectivity

Right of ways

Location of repairs

System Mapping

Know your system!

Pipe size and material

Locations of manholes

Depths of manholes

Connectivity

Right of ways

Location of repairs

System Mapping

Know your system!

Pipe size and material

Locations of manholes

Depths of manholes

Connectivity

Right of ways

Location of repairs

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Flow Monitoring

Divided collection system into flow basins based on length of sewer

- Targeted areas of 10,000 linear feet
- New Kensington/Lower Burrell delineated 72 drainages
- FTMSA delineated 13 drainages

Multiple rain gauges depending on the size and topography of the target area

- New Kensington maintains 6 gauges
- FTMSA utilized 2 gauges

Flow Monitoring

Divided collection system into flow basins based on length of sewer

- Targeted areas of 10,000 linear feet
- New Kensington/Lower Burrell delineated 72 drainages
- FTMSA delineated 13 drainages

Multiple rain gauges depending on the size and topography of the target area

- New Kensington maintains 6 gauges
- FTMSA utilized 2 gauges

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Mott MacDonald /

Approach

Groundwater

Fast I/I

Minimum night time flow

Average dry weather flows

Diurnal flows

Sanitary Sewer Overflows (SSOs)

Hydraulic overloading

Mott MacDonald |

Approach

Groundwater

Fast I/I

Minimum night time flow

Average dry weather flows

Diurnal flows

Sanitary Sewer Overflows (SSOs)

Hydraulic overloading

2	A	8	c	D	E	F	G	H	1
1		Flow Meter		Ave Dry	Rainfall Even Rainfall	11/10/2015	12/1/2015	12/2/2015	1/10/2016
2	Flow Meter ID	ID	Meter Description	(MGD)	(Inches)	0.93	0.52	1.07	0.75
3					Peak Flow	1.739	1.036	2.231	2.260
4	Interceptor Meter	5-121A	Main Interceptor at Old Willm, Penn	0.509	Peaking Factor	3.42	2.04	4.38	4,44
5					Peak Flow	0.194	0.108	0.253	Meter
6	Meter Basin #1	5-122C	Franklintowne Branch	0.037	Peaking Factor	5.24	2.92	6.84	Malfunction
7					Peak Flow	0.350	0.183	0.527	0.520
8	Meter Basin #2	A-414	Rustic Ridge Benden Circle	0.045	Peaking Factor	7.78	4.07	11.71	11.56
9					Peak Flow	0.106	0.053	0.168	0.148
10	Meter Basin #3	TBC-5	Turnberry Court	0.011	Peaking Factor	9.64	4.82	15.27	13.45
11					Peak Flow	0.014	0.008	0.016	0.028
12	Meter Basin #4	SR-106	Verner Court	0.005	Peaking Factor	2.80	1.60	3.20	5.60
13					Peak Flow	0.145	0.074	0.216	0.218
14	Meter Basin #5	SR-107	Glen Eagle	0.019	Peaking Factor	7.63	3.89	11.37	11.47
15					Peak Flow	0.178	0.118	0.221	0.236
16	Meter Basin #6	FTD-122	Forbes Trail Drive	0.058	Peaking Factor	3.07	2.03	3.81	4.07
17					Peak Flow	0.156	0.074	0.114	Meter
18	Meter Basin #7	THD-11-4	Trouthaven Drive (Tartan Court)	0.041	Peaking Factor	3.80	1.80	2.78	Malfunction
19					Peak Flow	0.033	0.035	0.065	0.042
20	Meter Basin #8	THD-5-5	Trouthhaven Drive (Glenshire Drive)	0.01	Peaking Factor	3.30	3.50	6.50	4.20
21					Peak Flow	0.164	0.069	0.172	0.198
22	Meter Basin #9	HD-5-8	Harwick	0.023	Peaking Factor	7.13	3.00	7.48	8.61
23					Peak Flow	0.034	0.047	0.101	0.167
24	Meter Basin #10	HD-5-88	Harwick/Brookshire	0.008	Peaking Factor	4.25	5.88	12.63	20.88
25					Peak Flow	0.095	0.078	0.124	0.159
26	Meter Basin #11	P.O-8-1	Pin Oak	0.052	Peaking Factor	1.83	1.50	2.38	3.06
27					Peak Flow	0.016	0.013	0.015	0.030
28	Meter Basin #12	T-622	Remaley Road	0.003	Peaking Factor	5.33	4.33	5.00	10.00
29					Peak Flow	Meter	0.108	0.140	0.248
30	Meter Basin #13	BR-105	Heritage Estates	0.029	Peaking Factor	Malfunction	3.72	4.83	8.55
31					Peak Flow	1.547	0.841	1.922	1.878
32	Interceptor Check Meter #1	5-127D	Main Interceptor Check @ Auto Body Shop	0.38	Peaking Factor	4.07	2.21	5.06	4.94
33					Peak Flow	0.220	0.132	0.226	0.254
34	Interceptor Check Meter #2	BR-1	Interceptor at 10" to 12" Transition	0.052	Peaking Factor	4.23	2.54	4.35	4.88

Approach

Groundwater

Fast I/I

Minimum night time flow

Average dry weather flows

Diurnal flows

Sanitary Sewer Overflows (SSOs)

Hydraulic overloading

Mott MacDonald |

Approach

Groundwater

Fast I/I

Minimum night time flow

Average dry weather flows

Diurnal flows

Sanitary Sewer Overflows (SSOs)

Hydraulic overloading

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Mott MacDonald /

Approach

Who performs Closed-Circuit Television (CCTV) Inspections?

- Contractor
- Owner

When do you conduct inspections?

- Dry weather
- Wet weather

Results

Results

Results

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Mott MacDonald /

Approach

- Excavate and replace
- Trenchless repairs
- Cured in Place Pipe (CIPP)
 - Sectional lining
 - Manhole to manhole lining
- Slip lining
- Grouting
- Manhole rehabilitation
- Lateral rehabilitation

Approach

- Franklin Township
 - Sewer mains with active infiltration
 - Upstream and downstream manholes
 - All lateral connections

New Kensington

- Sewer mains with structural defects and roots
- All lateral connections

• Lower Burrell

- Lined entire project area
- All manholes
- Only break in lateral connections

Fractured, Broken, and Deformed Pipe

Cured In Place Pipe (CIPP)

- Hot water
- Steam
- Ultraviolent

Potential issues

- CIPP will take the shape of the host pipe
- Upstream and downstream access required
- Host pipe should be cleaned and inspected immediately prior to lining
- Active gushers and runners need to be stopped

Collapsed Pipe

CIPP can not be inverted through the defect

Excavation is required

• CIPP may be installed after the excavation point repair

Manhole Rehabilitation

Rehabilitation technologies for:

- Corrosion protection
- Structural build back
- Inflow/Infiltration
- Inflow/Infiltration technologies
- Cover inserts
- Chimney seals
- Lining systems
- Chemical grouting

14 February 2019

Manhole Rehabilitation

Manhole lining systems

- Trowel/spray applied
- Epoxy
- Polyurethane
- Modified polymer stress skin panel
- Cementitious
- Potential issues
- Surface preparation is critical for proper adhesion of the liner to the manhole.
- Conduct spark testing for pinholes
- Don't forget the bench and channel

14 February 2019

Lateral Connections

Lateral rehabilitation methods

- CIPP mainline lateral connections (LCR)
- Grouting
- Excavation and replacement

Potential Issues

Where does lateral become private? LCR further reduces the diameter of the main Upstream and downstream access points Debris/roots may prevent insertion Alignment may prevent insertion

Private Laterals

- Who is responsible?
- Private lateral inspection programs
 - Requirement of a house sale.
 - Requires CCTV inspection of all underground sewer pipe.
 - 1st year of program saw 50% failure rate.
 - Escrow is required for estimated repairs at time of sale.

What was learned

- Know your system!
- Pipe conditions can degrade between inspection and construction.
- Where does private property start on a lateral.
- I/I will migrate along a liner to a lateral or manhole.

Overview of I/I Approach

- 1. System Mapping
- 2. Flow Monitoring
- 3. Hydraulic Characterization
- 4. CCTV Investigation
- 5. System Rehabilitation
- 6. Post Construction Flow Monitoring

Post-Construction Flow Monitoring

Approach

Reinstall flow meters for 3 month period in the same locations.

Ideally want to observe 2-3 significant storm events and a extended period of dry weather

Learn from results.

Results

New Kensington

MB083

Flow studies

April – June 2012

6.2 inches of rain

April – June 2018 11.68 inches of rain

Results

New Kensington

MB083

Results

New Kensington

MB083

Results

New Kensington

MB083

MB 083 Contribution

Flow Monitoring Observations

Housing authority accounts for ~1/3 of wet weather flow in MB 083

2018 data indicates high wet weather groundwater contribution as compared to 30% I/I model Several storm events with peak flows as predicted by 30% I/I removal model

Dry weather groundwater contribution has decreased by approximately .005-.01 MGD (1.8 MG and 3.65 MG annually).

Overall reduction in peaking factors

Reduction in fast flow I/I response in micro basins.

Thank you

Mott MacDonald | Presentation

14 February 2019