# The Largest Cost Savings You Don't Know About

**JKM**uir

Presented by: Chelsea Conlon, Project Engineer and Alex Rozen, Project Engineer



## Why look at electric bills?



#### Understanding Power Bills

- Supplier charges
- Delivery charges
- Usage (kWh) charges
- Demand (kW) charges





![](_page_4_Figure_0.jpeg)

## Why should YOU care about demand?

![](_page_5_Figure_1.jpeg)

#### Your electric supplier is

CONSTELLATION NEWENERGY C&I 1221 LAMAR ST SUITE 750 STE HOUSTON TX 77010-3038 844-636-3749

#### **Total Charges for Electricity**

| Demand = 35% of Bill               |                    |               |  |  |  |  |
|------------------------------------|--------------------|---------------|--|--|--|--|
| Total Current Charges              |                    | \$1,273.60    |  |  |  |  |
| Total Cost of Electricity          |                    | \$1,273.60    |  |  |  |  |
| Subtotal Delivery Services         |                    | \$651.09      |  |  |  |  |
| Comb Public Benefit Chrg*          | 8670.00kWh X \$0.0 | 0745 \$64.59  |  |  |  |  |
| FMCC Delivery Chrg                 | 8670.00kWh X \$0.0 | 0939 \$81.41  |  |  |  |  |
| CTA Demand Chrg                    | 21.60KW X \$0.0    | 4000 \$0.86   |  |  |  |  |
| Revenue Adj Mechanism              | 8670.00kWh X \$0.0 | 0201 \$17.43  |  |  |  |  |
| Electric Sys Improvements***       | 21.60KW X \$0.2    | 3000 \$4.97   |  |  |  |  |
| Distribution Dmd Chrg              | 21.60KW X \$13.3   | 0000 \$287.28 |  |  |  |  |
| Distr Cust Srvc Chrg               |                    | \$44.00       |  |  |  |  |
| Transmission Dmd Chrg              | 21.60KW X \$6.9    | 7000 \$150.55 |  |  |  |  |
| Delivery (DISTRIBUTION RATE: 030)  |                    |               |  |  |  |  |
| Subtotal Supplier Services         |                    | \$622.51      |  |  |  |  |
| Generation Srvc Chrg**             | 8670.00kWh X \$0.0 | 7180 \$622.51 |  |  |  |  |
| Supplier (CONSTELLATION NEWENERGY) |                    |               |  |  |  |  |

![](_page_5_Picture_6.jpeg)

## What affects demand and what can we do about it?

![](_page_6_Figure_1.jpeg)

![](_page_7_Picture_0.jpeg)

## Rate Structure Analysis

- Determined by electric utility and typical energy usage/demand.
- Call utility representative to discuss current rate structure.
  - In some cases a facility can chose between two rate different rate structures.
  - Ensure your rate structure matches with the most recent energy usage of your facility.
- Understanding rate structures can open doors for energy cost savings.

## On/Off-Peak Demand

#### DETAIL OF CURRENT CHARGES

#### Delivery Services

• On a

|        |                         | Energy-kWh   | Demand-kW    | Demand-kVA   |         |
|--------|-------------------------|--------------|--------------|--------------|---------|
|        | Metered Usage           | 406990 kWh   |              |              |         |
| Exan [ | Peak                    | 141865 kWh   | 824.0 kW     | 860.0 kVA    |         |
| • (    | Off Peak                | 265125 kWh   | 852.0 kW     | -            |         |
|        | Billed Usage            | 406990 kWh   | 824.0 kW     | 860.0 kVA    |         |
| 0      | Customer Charge         |              |              | 223.00       |         |
|        | Dist Chg On Peak        | 0.01617199 x | 141865 kWh   | 2,294.23     | avs and |
|        | Dist Chg Off Peak       | 0.00864199 x | 265125 kWh   | 2,291.22     | ayo ana |
|        | Transition Charge       | 0.00034205 x | 406990 kWh   | 139.21       |         |
|        | Transmission Charge     | 0.02111136 x | 406990 kWh   | 8,592.11     |         |
|        | Distribution Demand Chg | 5.76 x       | 824 kW/kVA   | 4,746.24     |         |
|        | High Voltage Discount   | -0.52 x      | 824 kW       | -428.48      |         |
|        | Energy Efficie Demar    | nd = 22% of  | Rill Wh      | 3,894.90     |         |
|        | Renewable E             |              | Wh           | 203,50       |         |
|        | High Voltage Metering   | -1.0 % x     | \$ 22384.41  | -223.84      |         |
| -      |                         | Total Deliv  | ery Services | \$ 21,732.09 | M U     |

## 15-minute vs. 30-minute Demand

#### National Grid MA Rate G-3

Demand is based on:

• Greatest fifteen minute average peak during peak hours

#### Eversource CT Rate 30

Demand is based on:

• Highest average 30-minute peak during the billing month

![](_page_9_Picture_7.jpeg)

#### **EVERSURCE**

![](_page_9_Picture_9.jpeg)

# How can we work with these time-of-day charges?

- 1, 100 HP blower operating all the time
- 2<sup>nd</sup> 100 HP blower sometimes turns on
  - Prevent the 2<sup>nd</sup> blower from turning on during peak hours
  - Reduce by 100 HP = ~ 75 kW \* \$12.13 = \$923 per month = \$11,079 annual savings
     Eversource
     CT 37
- 100 HP and 200 HP Influent Pumps operating based on wetwell level
- Solids handling equipment operating 1 shift per day
  - Delay solids handling operation when 200 HP pump is operating
  - Reduce by 50 HP = ~ 37 kW \* \$14.93 = \$552 per month = **\$6,629 annual savings**

Eversource Western MA T-4

## Case Study: Time of Day Use

- Water Treatment Plant
- Massachusetts
- National Grid Rate Structure G3

# nationalgrid

Demand is based on:

- Greatest fifteen minute average peak during peak hours
- On-peak hours are from 8am to 9pm Mon-Fri
- Off-peak hours are from 9pm to 8am Mon-Fri & Weekends
- Demand Charge = \$5.76/kW

![](_page_11_Picture_10.jpeg)

## Case Study: Time of Day Use

**Intermittent Operated Equipment:** 

![](_page_12_Picture_2.jpeg)

- 100 HP Backwash Pumps
- 16.5 minute backwash cycle
- Summer: 1 backwash per day
- Winter: 1 backwash every other day

| Average Peak | Backwash pump   | <b>Reduced Peak</b> |        | Monthly Cost | Annual Cost |
|--------------|-----------------|---------------------|--------|--------------|-------------|
| Demand (kW)  | Power Draw (kW) | Demand (kW)         | \$/kW  | Savings      | Savings     |
| 149          | 64              | 85                  | \$5.76 | \$369        | \$4,424     |

![](_page_12_Picture_8.jpeg)

### National Grid MA Rate G-3

Demand is based on higher of the:

- Greatest fifteen minute peak during peak hours measured in kilowatts
- 90% of the greatest fifteen minute peak during peak hours measured in kilovolt-amperes

![](_page_13_Picture_5.jpeg)

#### **Power Factor**

- Measure of real power (kW) vs apparent power (kVA)
- Measure of efficiencies and loses in the system
- Typically in rate structures of large facilities
- Ideal power factor is **0.9**

Power Factor =  $\frac{kW}{kVA}$ 

![](_page_14_Figure_6.jpeg)

Power Factor Correction

#### **Entire Facility Correction**

• Install a large capacitor to correct the power factor of the entire facility

#### Individual Equipment Correction

- Identify sources of low power factor
  - Non VFD equipment (mixers, aerators, oversized pumps
  - Lightly loaded motors
- Install VFDs or capacitors at individual motors/starters

#### Case Study: Power Factor Correction

#### DETAIL OF CURRENT CHARGES

#### **Delivery Services**

| Type of Service | Current Reading | Previous Reading = |      | Difference | Meter<br>X Multiplier | -  | Total Usage  |
|-----------------|-----------------|--------------------|------|------------|-----------------------|----|--------------|
| Energy          | 59108 Actual    | 58560 Actual       | 5    | 548        | 2100                  |    | 1150800 kWh  |
| Peak            | 22593 Actual    | 22386 Actual       | 2    | 207        | 2100                  |    | 434700 kWh   |
| Off Peak        | 36515 Actual    | 36174 Actual       | 3    | 341        | 2100                  |    | 716100 kWh   |
|                 |                 |                    |      |            | Total Energy          | ЭУ | 1150800 kWh  |
| Demand-kW       |                 |                    |      |            |                       |    |              |
| Peak            |                 |                    |      |            | 2100                  |    | 2121.0 kW    |
| Off Peak        |                 |                    |      |            | 2100                  |    | 1869.0 kW    |
| Demand-kVA      | ۱.              |                    |      |            |                       |    |              |
| Peak            |                 |                    |      |            | 2100                  |    | 2772.0 kVA   |
| Off Peak        |                 |                    |      |            | 2100                  |    | 2499,0 kVA   |
| ······          |                 |                    |      |            |                       |    |              |
| Customer        | r Charge        |                    |      |            |                       |    | 223.00       |
| Dist Chg        | On Peak         | 0.01617533         | х    | 43470      | 00 kWh                |    | 7,031.40     |
| Dist Chg        | Off Peak        | 0.00864533         | х    | 71610      | 00 kWh                |    | 6,190.91     |
| Transition      | n Charge        | -0.0000443         | х    | 11508      | 300 kWh               |    | 50.98        |
| Transmis        | sion Charge     | 0.02195798         | х    | 11508      | 300 kWh               |    | 25,269.24    |
| Distributio     | on Demand Chg   | 5.76               | х    | 2494.      | 8 kW/kVA              |    | 14,370.05    |
| High Volt       | age Discount    | -0.52              | х    | 2494.8     | B kW                  |    | -1,297.30    |
| Energy Ef       | fficiency Chg   | 0.00957            | х    | 11508      | 300 kWh               |    | 11,013.16    |
| Renewab         | le Energy Chg   | 0.0005             | х    | 11508      | 300 kWh               |    | 575.40       |
| High Volta      | age Metering    | -1.0 %             | х    | \$ 646     | 22.18                 |    | -646.22      |
|                 |                 | Total De           | etiv | ery Se     | rvices                |    | \$ 62,678.66 |

![](_page_16_Figure_4.jpeg)

### **Ratchet Demand Charge**

#### **Eversource CT Rate 58**

Demand is based on:

The highest average 30-minute kVA demand in the current month or the preceding 11 months

![](_page_17_Figure_4.jpeg)

![](_page_18_Picture_0.jpeg)

## Demand Monitoring – Proactive instead of Reactive

- Monitor power draw in real time.
- Pinpoint cause of high demand.
- SCADA alerts to warn operators when demand is reaching peak levels.
  - Automatically or manually shutdown ancillary equipment.
- Cross check demand measured by electric utility.

#### Case Study: Billing Error

Max Off-Peak Demand: 537.60 kW Max Off-Peak Demand: 616.00 kVA

| Electricity Supply Detail     | CONSTELL     | ATI | DN         |             |
|-------------------------------|--------------|-----|------------|-------------|
| Generation Srvc Chrg**        | 297600.00KWH | Х   | \$0.065200 | \$19,403.52 |
| Subtotal                      |              |     |            | \$19,403.52 |
| CL&P Delivery Services Detail | DISTRIBUT    | ION | RATE: 058  |             |
| Prod/Trans Dmd Chrg           | 620.80KVA    | Х   | \$6.930000 | \$4,302.14  |
| Distr Cust Srvc Chrg          |              |     |            | \$2,125.00  |
| Distribution Dmd Chrg         | 3200.00KVA   | Х   | \$6.020000 | \$19,264.00 |
| Prod/Trans CTA Dmd Chrg       | 620.80KVA    | Х   | \$0.140000 | \$86.91     |
| FMCC Delivery Chrg On-Pk      | 68800.00KWH  | х   | \$0.011290 | \$776.75    |
| FMCC Delivery Chrg Off-Pk     | 228800.00KWH | Х   | \$0.002440 | \$558.27    |
| Combined PBC - On-Pk*         | 68800.00KWH  | Х   | \$0.007600 | \$522.88    |
| Combined PBC - Off-Pk*        | 228800.00KWH | х   | \$0.007600 | \$1,738.88  |

Subtotal

\$29,374.83

Service Account Messages

Distribution Demand based on ratchet

#### \$158,000 Rebate

#### Demand Response – Potential Revenue Stream

- Energy users sign up to reduce energy uses during peak demand events.
  - Curtail load.
  - Switch to on-site generation.
- Reduced demand helps balance demand and stabilize the electricity grid.
- Users are paid for their reduced demand.

![](_page_20_Figure_6.jpeg)

![](_page_21_Picture_0.jpeg)

Review your rate structure

#### Review bills monthly

#### Get creative with the equipment operation

Determine if demand response is an option

![](_page_21_Picture_5.jpeg)

## Questions?

**Chelsea Conlon** 

Project Engineer 860-249-0989 ext. 707 cconlon@jkmuir.com Alex Rozen Project Engineer 860-249-0989 ext. 708 arozen@jkmuir.com