

Evaluating the Progress of Multi-Decade CSO Abatement Programs

Mike Riley, PE

CSO Coordinator

Division of Water Quality Management

A true statesman

Clean Water Act of 1972

 Federal measure to regulate the discharge of pollutants into any water in the United States

Combined Sewer Overflows (CSO's)

- Legacy problem we've inherited
- From a time when Sanitary and Storm Sewers
 Were One and the Same
- Combined sewer systems have to handle a wide range in flows between dry weather and wet weather (peaking factor)
- CSO's when wet weather flow exceeds the conveyance capacity of the combined sewer

Combined Sewer

Separate Sewer

Why are we concerned?

- CSO's are an uncontrolled release of untreated sewage into our rivers and harbors
 - Human Health risk
 - Impact on water quality of the receiving water
 - Impact on aquatic wildlife
 - Impact on marine based economies (shell fishing)

CSO Abatement History

- 1989 EPA publishes National CSO Control Strategy
- April 19, 1994 EPA issues the CSO Control Policy
 - Directive to reduce CSO discharge by reducing inflow and infiltration (I&I)
- 2000 MeDEP issued Ch. 570 titled
 Combined Sewer Overflow Abatement

Goal of Sewer Collection System

 Collect and transport sanitary wastewater from each residence, business, and industry to the **POTW without** any spillage

No spillage, you say!

- Achieve this goal regardless of the weather
- More difficult in wet weather due to the impact of inflow and infiltration (I & I)
- Public versus Private sources of I & I

Provide System Storage

IN LINE STORAGE

OFF LINE STORAGE

WARNING

COMBINED SEWER OVERFLOW
DISCHARGE POINT

POLLUTION MAY OCCUR
DURING RAINFALL

CSO OUTFALL NUMBER 014 (THIRD AVENUE) PERMIT # GA 0036854

TO REPORT PROBLEMS CALL: CITY OF ALBANY SEWER SYSTEMS DIVISION (229) 883-8998

EPD PHONE (600) 241-4113

NO SWIMMING With so much at stake, how do we measure the progress of complex, long-term CSO abatement programs fairly?

Why is it important?

- Funding agency make sure the money is spent to achieve the greatest benefit
- Regulatory agency make sure the community is complying with the LTCP
- Owner provides feedback on effectiveness of CSO program
- Rate Payer make sure their money is spent in a cost effective manner

How do we gauge statewide progress?

MAINE - STATEWIDE COMBINED SEWER OVERFLOW (CSO) ANNUAL NUMBER OF DISCHARGE EVENTS

Statewide Progress – Discharge Volume

MAINE - STATEWIDE COMBINED SEWER OVERFLOW (CSO) VOLUME DISCHARGED

Statewide Progress by Watershed

Maine 2017 CSO Volume Discharged by Watershed 0.29 Billion Gallons

Annual Expenditures on CSO's

Summary of Statewide CSO Statistics

Metric	1989	2017	% Reduction
# of CSO Communities	60	31	48
# of Overflow Events/Year	1,700	269	84
# of CSO Discharge Points	340	137	60
Volume Discharged (BGY)	6.2	0.29	95.3
CSO Discharge Volume per Inch of Rain (MG/inch)	128	7	94.5

How do we gauge community progress?

 For individual CSO communities it's more difficult – can gauge annual progress relative to their own Master Plan, but it's difficult to compare with other communities progress

Why is it so challenging?

- Number of variables involved hinder direct comparisons
 - Each CSO community began at a different starting point (late 80's, early 90's, late 90's)
 - Each chose a different timeframe to complete
 CSO abatement (ranging between 5 23 years)
 - Each selected their own level of control (1-yr 24-hr storm all the way to 100% elimination)

Variable Starting Points

- Each began with varying levels of resources and public support to tackle the problem
 - 8 WW Districts
 - 24 WW Departments
 - 4 Contract Operations
- Each began with a debt load and rate structure unique to them
 - Sewer Rates as a % of MHI initial range from 0.68% 2.53%

Variable Starting Points

- Each CSO community began with a different size collection system (35,000 to 1.2M LF)
- Each system varied in the degree that it was combined
- Each system varied in the age and condition of piping
- Each system varied with respect to the sensitivity of the receiving water

Progress Relative to CSO Master Plan

- Compare actual CSO schedule relative to plan (% of schedule consumed)
- Compare actual CSO expenditure relative to plan (% cost expended)

Annual CSO Discharge Over Time

Annual CSO Expenditure Over Time

Utilize Long Term Trends

- Reduction in CSO discharge events per year
- Reduction in # of CSO discharge points
- Reduction in annual discharge volume
- # of Catch Basins which remain connected and pace of removal
- Lineal feet of sewer pipe replaced or relined

Sewer Systems react differently to wet weather

- Due to the different number of CSO discharge points (Range 1 to 30)
- Due to a different number of Catch Basins connected to the sewer (zero to 6,167)
- The mix of older (more combined) neighborhoods versus newer (less combined)
- The degree of public versus private I & I
- Whether any satellite systems are connected

Is there a way to compare CSO programs with all these variables?

- Try to remove the impact of the variable by unitizing it.
- What are biggest variables that have the most impact?
 - Precipitation
 - Area of collection system in acreage

MAINE COMBINED SEWER OVERFLOWS ANNUAL VOLUME DISCHARGED PER INCH OF PRECIPITATION

Unitize CSO Discharge per Acre

Apples to apples comparison?

- Unitize precipitation to arrive at CSO discharge per inch of precipitation
- Unitize area of collection system to arrive at CSO discharge per acre of drainage area
- Combine the two to arrive at
 - CSO Discharge/inch of ppt/acre of drainage

Those that don't remember history...

The smell of \$\$\$\$\$

Thank You! Any questions call:

Mike Riley, P.E.
CSO Coordinator
Prevention
287-7766

michael.s.riley@maine.gov www.maine.gov/dep

