Large Scale Problems Require Large Scale Solutions

The Need to go beyond Political Boundaries in the Mystic River Watershed

> David Bedoya, PhD, PE Kathy Watkins, City Engineer

Presentation Overview

Cambridge CCVA **2** The Alewife Brook Area **3** Hydraulic Model Integration 4 Hydraulic Model Calibration and Validation 5 Model Uses Conclusions

1 Cambridge CCVA*

Source: 2014 U.S. National Climate Assessment Report *Kleinfelder is prime contract holder, Stantec performed flood risk and hydraulic modeling

Cambridge CCVA

Increase in Precipitation

Source: Kleinfelder, 2015 Cambridge CCVA, Part 1

Cambridge CCVA

SLR/SS

Source: NOAA (2012). Global Sea Level Rise Scenarios for the United States National Climate Assessment

2 The Alewife Brook Area

- This region of Cambridge is the most vulnerable to flooding under climate change
- Flooding risk is augmented by increased precipitation up to midcentury as well as SLR/SS at the end of the century
- The Alewife area will be impacted by both riverine and sewer system flooding

The Alewife Brook area in the Future – Title of the Movie?

Year 2070 (1% SLR event)

Year 1830

ullivan, Cambridge Historical Commission

Flood Sources Identified in the CCVA

Sewer System Flooding from Precipitation

- Captured Using City's Infoworks ICM Model
 Riverine Overbank Flooding from Heavy
 Precipitation
- Captured using HEC-RAS model

Riverine Overbank Flooding from SLR/SS events

• Captured using ADCIRC in the BH-FRM

Scale of Urban Flood Sources

Sewer System

- Local scale problems (usually conveyance or storage capacity issues)
- Regional scale factors have an impact

Local Flow Contributions

River (overbank flooding)

- Usually a regional or watershed scale issue
- Local scale contributions have a cumulative impact

Ocean (overbank flooding)

- Global scale (but there can be regional mitigation solutions)
- Marginal impact of local scale contributions

Backflow

propagation

Sewer System Flooding from Precipitation

Riverine and Sewer System Flooding from Precipitation

Riverine Flooding from SLR/SS

Challenges of a non-integrated approach

- Different flood types occur at different times (local scale versus regional scale timing)
- Flooding is generated by factors of different scale
- High degree of inter-dependence
 between systems
- Hard to seamlessly assess impact of regional measures at the local scale and viceversa

3. Mystic River Watershed Model Integration

)) Stantec

Mystic River Watershed Model Integration

Alewife Brook Pkwy

Jerrys Pond

Pipe-river connectivity

4 Hydraulic Model Calibration and Validation

Photos courtesy of Cambridge DPW

Hydraulic Model Calibration and Validation-Selected Storms

			Legend	
	March 2010	May 2006	Rain Gage River Stage Station River Tite Stage Station River Discharge Station Node Conduit River reach Schneider Schne	
Start Date/Time	13/8:00	12/17:30	Cambridge Roads Storage area 2D Ground Model Subcatchment HF-1C Cummings Hom Pond	
End Date/Time	15/21:00	16/18:30	Creek River Aberjona Shakers River Aberjona Glen Aberjona	
Total Rainfall (in)	9.59*	7.42*	Creek Mystic River Juework Brook	, ,,
Peak Intensity (in/hour)	1.32	0.60	Mill Creek Mystic River CH-80-1 PRESIDEND AN MARSTIC River	
Return Period**	>50-yr	~>25-yr		
At Muddy River in Brookline RG			Contraction of Philodo Multiply Revent Ext. HERE, Declamase, Majoray Index	munity
*Based on NOAA Atlas 14 Estimates at Logan		Logan		

Airport

Hydraulic Model Calibration -March 2010 River Gages

USGS Station		Model	Meter	Difference (ft)
Alewife Brook	Peak Stage (ft)	16.52	15.90	-0.62
Amelia Earhart Dam	Peak Stage (ft)	12.05	11.90	-0.15

Stantec

Hydraulic Model Calibration -March 2010 River Gages

Metered vs Simulated Flow Discharge at Aberjona River in Winchester, MA

Hydraulic Model Calibration - March 2010 Photographic Evidence

Photographs Courtesy of Cambridge DPW

Hydraulic Model Calibration - March 2010 Photographic Evidence

Photographs Courtesy of Cambridge DPW

Hydraulic Model Validation -May 2006

5. Model Uses – Local Scale Project Assessment

Model Uses – Local Scale Project Assessment Existing Conditions

Model Uses – Local Scale Project Assessment Example Project: Surface Berm

Model Uses – Evaluate Impact of Downstream Modifications

Source: AECOM evaluation report of the Cradock Dam removal, 2015

Model Uses – Evaluate Impact of Downstream Modifications

Model Uses – Evaluate Impact of Downstream Modifications

	New Crad	ock Locks	Old Cradock Locks						
Horizon	3 pumps	4 pumps	3 pumps						
100y, 24h									
Present	16.89	16.89	16.90						
2030	17.49 17.35		17.46						
2070	18.88	18.67	18.85						
25y, 24h									
Present	15.73	15.73	15.73						
2030	16.19	16.19	16.19						
2070	16.62	16.62	16.62						
10y, 24h									
Present	15.09	15.09	15.09						
2030	15.44	15.44	15.44						
2070	15.82	15.81	15.81						

Model Uses – Understand Root Causes of Watershed Issues

Model Uses – Understand Root Causes of Large Scale Flooding

Model Uses – Real-Time Watershed Management

Model Uses – Evaluation of Impacts and Emergency Management

ntec

Conclusions

- The Mystic River model has been successfully integrated, calibrated, and validated
- The model is being used by Cambridge to evaluate mitigation options at different scales
- Somerville is also fully integrated and using it for its flood risk assessment
- The watershed integrated model is ready to be used to assess regional or watershed-wide mitigation actions (e.g. reduction in DCIA or main channel conveyance improvements)
- It can be used for watershed and regional decision making and to evaluate phasing and effectiveness of those decisions
- Model detail can be added as it becomes available

Thank you!! Questions?

