

NBC Phase III CSO Control Program

NEWEA CSO/Wet Weather Issues Conference

Green Stormwater Infrastructure (GSI) Demonstration Projects to Address CSOs

Introduction

Kathryn Kelly, P.E. – Project Manager

Stantec

Christopher Feeney, P.E. – Senior Associate

Pare Corporation

Brandon Blanchard, P.E. – Managing Engineer

Narragansett Bay Commission

 Wastewater Collection and Treatment in 10 Communities in Greater Providence

- Operates 2 largest POTWs in RI
 - Serves 360,000 Residents
 - Serves 7,800 Businesses

NBC CSO Control Program

- 1992: NBC Embarked on a CSO Long Term Control Program
- 1998: NBC Defined Three Phase CSO Control Program
- Program Goals:
 - 98% reduction annual CSO volumes
 - 98% reduction fecal coliform loading
 - 95% reduction in number of annual overflows
 - < 4 overflows per year</p>
 - 75% and 80% reduction in TSS and BOD loadings, respectively
 - 80% reduction in shellfish bed closures.

NBC CSO Control Program

Phase I CSO Program

Construction: 2001 to 2008

• Cost: \$360M

 Deep rock storage tunnel, tunnel pump station, drop shafts, consolidation conduits

Phase II CSO Program

Construction: 2011 to 2015

Cost: \$197M

 CSO interceptors, sewer separation, and storage/wetlands facility

Phase III Re-Evaluation

- Phase III Re-Evaluation: 2016/2017
- Phase III Divided Into 4 sub-phases
- Anticipated Cost: \$750M
- Implementation Schedule Extended to Reduce Rate Payer Impact
 - Phase IIIA complete: 2026
 - Phase IIID complete: 2041

Phase III Projects

Phases IIIA/IIIB Design – 18 Contracts

- Deep Rock Storage Tunnel
- Tunnel Dewatering Pump Station
- Consolidation Conduits
- Regulator Modifications
- Sewer Separation
- Green Stormwater Infrastructure

Green Stormwater Infrastructure

- Reduce Volume to CSOs
- Intercept Stormwater Before Entering Combined System
- Infiltrate or Detain Stormwater

GSI Best Management Practices

- To be used at public sites and public rights-of-way
- Broad selection of GSI for vacant or developed sites
- Adaptable to various landscapes
- May enhance aesthetics of underutilized land

Initial GSI Screening Process

GSI Opportunities

- Several Potential Sites
 Identified per Sewershed
- Floodplain, Historical,
 Environmental Constraints
 Considered
- Land Ownership Identified
- Stakeholder/Municipal Support
- Advance Design of GSI Demonstration Projects

Green Stormwater Demonstration Projects

- Reduce CSOs
- Diverse Site Selection
- Employ Multiple GSI Best Management Practices
- Maximize Stormwater Capture from Relatively Small Storms
- Retrofit to Existing Landscape, Provide Treatment to Maximum Extent Practical
- Demonstrate Effectiveness of GSI for CSO Control
- Demonstrate Maintenance Responsibilities
- Design with Operation & Maintenance in Mind

City of Central Falls, RI

- Area: 1.2 sq. mi
- Population: ~ 20,000
- Urban, High Density
- Low Income, EJ Area
- Limited Green Space and Recreational Facilities
- Served by Combined Sewers

1304 High Street, Central Falls

GSI BMP Design Basis & Predicted Results

GSI BMP	Catchment Area (AC)	Total Runoff Volume (CF)	BMP Infiltration Area (SF)	Depth in Bioretention Area
Bioretention Area – 1A	3.8	6,500	8,800	9 inches
Bioretention Area – 1B	2.0	7,700	4,800	19 inches
Permeable Pavers	0.01	490		
Total	5.8	14,200		

Total CSO Volume	Volume of Runoff	Percent Volume
at OF-101 Before GSI	Removed from Catchment	Removal at OF-101
1.4 MG	0.1 MG	7.6%

Dexter Street Parking GSI Project

- Permeable Pavement to Retrofit Existing Parking Lot
- Bioretention Areas around Perimeter

Tree Swales in Right of Way

Dexter Street Parking GSI Project

adapted from the University of New Hampshire

Transit Oriented Development (TOD) District

- New Pawtucket/Central Falls
 MBTA Station
- TIGER Grant, Other Federal/State/Local Funding
- Pawtucket Developing Parking Facilities to Serve New MBTA Station
 - RIDEM Grant for GSI
- Additional Opportunities to Integrate GSI & Transit Oriented Development

Benefits to GSI for Phase III CSO Program

- GSI installations provide enhanced CSO control
 - Other Proposed Facilities Meet Required Hydraulic Performance Objectives
 - Optimize traditional "grey" infrastructure where GSI is used
 - Expenditure Target ensures commitment to GSI
- Provide operational flexibility
- Build in resiliency for increasing storm frequency/intensity
- Meet stormwater quality requirements
- Address key stakeholder and regulatory agency input

Challenges Presented by GSI

- Future Site Use and Competing Interests
 - Municipalities require future site use that meets their needs
 - GSI installations must be of sufficient size and scale to be effective
- Environmental Conditions
 - Existing subsurface conditions must be suitable for infiltration
 - Soil and groundwater contamination likely
- Site Availability
 - Site and project scope mutually agreed upon by site owner, project owner
- Stakeholder Engagement
 - Reach project consensus early to avoid scope creep
- Site Ownership and Maintenance Responsibilities

Future GSI Projects

- Macomber Stadium & Ballfields Central Falls
 - Incorporate GSI Into Site Enhancements
 - RIDEM Grants for Recreational Facility Improvements, Brownfields
- High Street Green Corridor Central Falls
 - Leverage Additional Opportunities Between GSI Sites
- Sewer Separation Projects Pawtucket, Providence
 - Incorporate GSI Installations to Optimize Sewer Separation
- Pawtucket/Central Falls TOD
 - Municipal Support to Drive Future Opportunities

Use Demonstration Projects as a Catalyst for Future GSI Projects

Questions?

