

Pfacts vs Pfear on PFAS – Separating Truth from Fiction

- Data generated from various geographies indicate ppb or ug/kg levels of PFAS in biosolids
 - Like wastewater concentrations, varies depending on input sources and density/location of treatment plant
- Limited field studies and data also indicate that some leaching from applied biosolids to underlying groundwater occurs at ppt or ng/L levels
- Additional uncertainty regarding whether leachate can or has impacted drinking water
- Some PFAS (e.g., PFOS and shorter chain) can accumulate and magnify up the food chain, such as if impacted fertilizer used on cattle grazing fields.
- Limited data collected thus far does not appear to indicate significant bioaccumulation or risk for plants consumed by people (Minnesota study).

Why the Focus?

- Persistent Organic Pollutant
 - > Annex B restriction of PFOS (2009)
 - > Proposed: PFOA, PFHxS
- Toxicity Studies
 - > Developmental, immune effects
 - Liver/kidney
 - > Increased cholesterol, hypertension, thyroid
 - > Cancers liver, testicular, pancreatic, kidney
- Prevalence and persistence in environment and in humans
 - Few standards/guidelines available and lots of uncertainty

C8 Science Panel

WOODARD &CURRAN

- Vast majority of studies focused on a limited number of chemicals, primarily PFOA and PFOS, and to a lesser extent, PFNA, PFHxS and PFDeA
- Typically see mixtures vs. single constituent
- "Dose" mg/kg/day amount of chemical (mg) taken into receptor per weight (kg) per day via exposure route (largely, oral)

- Drinking water exposure dose >>> soil ingestion/contact/inhalation dose
- Inconsistent correlation between dose and adverse outcome (response) can be non-linear

- Animal studies in rats and mice were predominant data source for identification of endpoints and dose-response relationships
 - > Wide variety of outcomes/effects observed focus on primary
 - > For chronic exposures:
 - Reproductive
 - Endocrine
 - Liver (hepatic)
 - Tumors (liver, pancreas, testicular)

- > BUT, evidence of carcinogenicity is inconsistent or inconclusive
- Doses in lab studies were often 10,000-1,000,000 higher than expected human environmental doses AND uncertainty factors applied to extrapolate to humans

- Epidemiological studies generally did not have monitoring data but "suggest associations" for some non-cancer effects including:
 - > Liver damage (increase in enzymes/decreases in bilirubin levels)
 - Endocrine effects
 - Thyroid/brain neurodevelopment
 - Obesity/diabetes/cholesterol (serum lipid)
 - > Reproductive
 - > Immune
 - > Developmental

- Local health studies that were *empirical* did not demonstrate compelling evidence that PFAS cause cancer – studies were either negative or inconsistent.
- Australian Expert Health Panel (May 2018)
 - > Little difference in outcome for high vs. lower exposed populations
 - Level of effect observed in even highest exposure groups small/within range of "normal" distribution
 - Significant potential for bias/confounding in almost all studies
 - "Limited or no evidence" for any link to human disease
 - > "No current evidence that suggests an increase in overall cancer risk"

WOODARD &CURRAN

- Netherlands NIPHE proposed "Relative Potency Factor" (RPF) Approach for PFAS mixtures
 - Similar to approach used for PCB and Dioxin Congeners and PAH Mixtures
 - Uses PFOA as "Index Compound" since well studied
 - Assess risks for 19 other chemicals based on their toxicity relative to PFOA and then sum for total PFAS risks (for 20 substances)

Nexus of Biosolids and Exposure to PFAS

- Biosolids Beneficial Reuse:
 - > Application in agricultural settings
 - > Fertilizer in parks, gardens
 - Landfill cover component for vegetating
 - > Reclamation of mines, quarries

The exposure route of concern in people is drinking water

Primary Exposure Routes for PFAS

- Food and water ingestion
 - Includes packaging/wrapping transport into food
- Interior dust ingestion

- Hand to mouth transfer from treated carpets/fabrics
- Other routes of exposure anticipated to be much lower due to either intake levels or intensity of exposure (e.g., soil contact, air inhalation)

- Data indicates concentrations of PFAS in virtually all media going down over time (since phase-out) as well as blood levels in humans but new/replacement chemicals increasing ("GenX" "ADONA")
- Leads to questioning of "relative source contribution" component of health advisories/drinking water standards (often assume 20%)
- Biosolids
 - > Direct soil intake/exposures low
 - Plant uptake for longer chain PFAS, human exposure risk appears limited, but some bioaccumulation/magnification observed for grazing cattle and their milk
 - > Leaching to groundwater is focus but field studies indicate little impact to water supplies likely
 - Need more field test data to better understand movement/migration at current biosolid concentrations – regional preferred (concentrations/weather/water table depth/hydrogeological parameters)

Basic Risk Calculations

- Key Exposure Assumptions
 - > Adult weight 70 kg
 - ➢ Ingestion rate of water − 2 Liters/day
 - ➢ Upper bound residence time at a single home − 30 years
 - > Upper bound occupational tenure (at single job) 25 years
 - ➢ Frequency for residential 350 days/365 days (year) 2 weeks vacn!
 - Frequency for worker 250 days/365 days five day work week
 - Duration for inhalation exposures for worker 8 hours/day
- Toxicity Values Example for Oral (drinking water)
 - Non-cancer = Reference Dose (RfD) in mg/kg/day
 - Cancer = Slope Factor (SF) in (mg/kg/day)⁻¹

- Ingestion of Drinking Water Key Variables
 - Dose = (Concentration * Intake rate* Frequency*Duration*Exposure Period) (Body Weight*Averaging Period)
- Non-cancer Risk (Hazard Index) = Dose/RfD compare ratio to benchmark or "limit" of 1
- Cancer Risk (Excess Lifetime Cancer Risk) = Dose*SF compare to applicable risk limit (e.g., in MA, 1 x 10⁻⁵ or 1 excess cancer per 100,000 people exposed)

Risks & Criteria for PFAS and Some Other Chemicals with Stringent Toxicity Values – Assuming Lifetime Drinking Water Use

	USEPA HA/MCL (ug/L)	RISKS (HI)	MMCL (ug/L)	RISKS (HI)	Waste Water LOW (ug/L)	RISKS (HI)	Waste Water HIGH (ug/L)	RISKS (HI)
PFOA	0.035	0.048	0.014	0.019	0.006	0.008	0.050	.068
PFOS	0.035	0.048	0.014	0.019	0.004	0.006	0.022	.037
TCE	5	0.274	5	0.274				
PERCHLORATE	15	0.587	2	0.078				

Notes:

MMCL = Massachusetts Maximum Contaminant Level

HA = Health Advisory

MCL = Maximum Contaminant Level HI = Hazard Index

- Asbestos
 - > Class "A" Human Carcinogen
 - > Initial AHERA Regulations in 1986

	OSHA (TWA) PEL	Risk (Worker)	Abatement Clearance Standard	Risk (Resident)	EPA RBC Resident (10 ⁻⁶)	EPA RBC Worker (10 ⁻⁶)
Asbestos	0.1 f/cc	2.5x10 ⁻³	0.01 f/cc	8.8x10 ⁻³	0.000006 f/cc	.000063 f/cc

Benzene

- > Class "A" Human Carcinogen
- ➢ Federal MCL = 5 ug/L

	Federal MCL (ug/L)	Risk (Resident) HI	Risk (Resident) ELCR	EPA RSL (Tap Water) NC (1; child only)	EPA RSL (Tap Water) C (10 ⁻⁶)
Benzene	5	0.54	1.9x10 ⁻⁵	33	0.46

Notes:

RSL= EPA Regional Screening Level

ELCR = Excess Lifetime Cancer Risk

NC = Non-Cancer

C = Cancer

How Do Other Countries Advise/Regulate? (ppt)

		PFOA	PFOS	Notes	
	USEPA	70	70	Combined	
	Australia	70	560 (inc. PFHxS)		
	Canada	200	600		
	BC, Canada	200	300		
	Denmark	100	100	Ind. & Summed (12)	
	Italy	500	NA		
	Sweden	90	90	Summed (7)	
EA	Source: ITRC, Table 4-1, Standards and Guidance values for water, 9/18				

WOODARD &CURRAN

Understanding your Data (and Audience!)

- Evaluation of Hazard
 - \succ In light of:
 - Conceptual Site Model
 - Standards/criteria/guidance
 - Toxicity Information
 - Site-specific risk assessment

Communication of Results

RISK = HAZARD + OUTRAGE

(Peter Sandman)

- Further research into actual health impacts to people such as Phase II Australian study
- Peer review and public comment on toxicity studies and methods to derive advisories and standards
- Cost-benefit evaluations for proposed testing and standards
- Evaluation of current biosolid concentrations and leaching field studies on regional level
- Balanced and fact-based Risk Communication is key to mitigating misperceptions and fear!

THANK YOU!! Questions?

