Innovative Wastewater Tech Pilots: A reuse case study

Michael Murphy - Director of Water Innovation

NEWEA Water Reuse Conference

Storrs, CT

August 10, 2018

Our Mission

Grow the state's clean energy industry while helping to meet the Commonwealth's clean energy, climate and economic development goals.

INVEST

Invest in programs that increase renewable energy adoption by residents, businesses and communities.

CONNECT

Connect employers, job seekers, students, communities and investors to the clean energy industry.

INNOVATE

Help to spur innovation through infrastructure, funding and technology development support.

How MassCEC Operates

FUNDING SOURCE

5 Municipal Lighting Plant Customers

\$22M annually

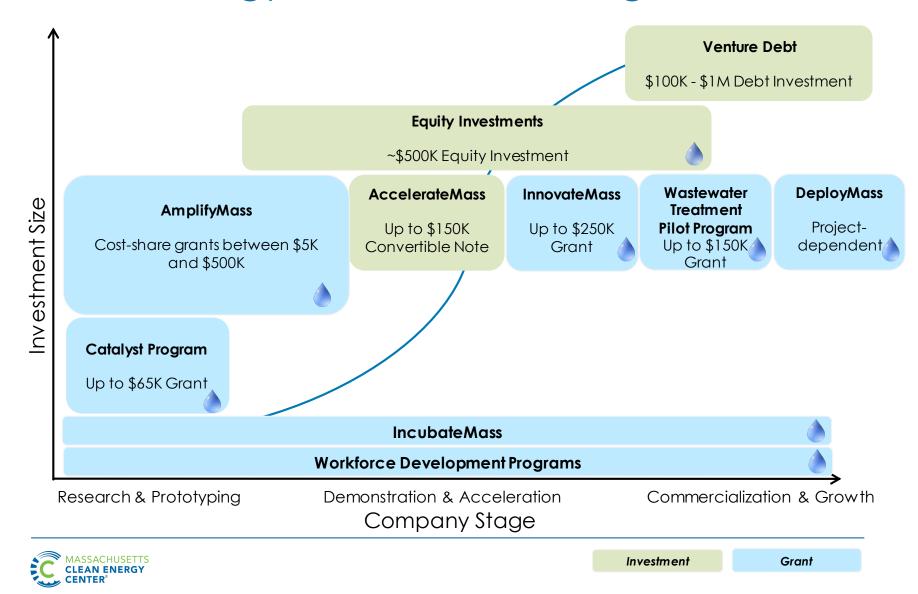
Collected via a surcharge equal to \$.29/month for an average residential customer

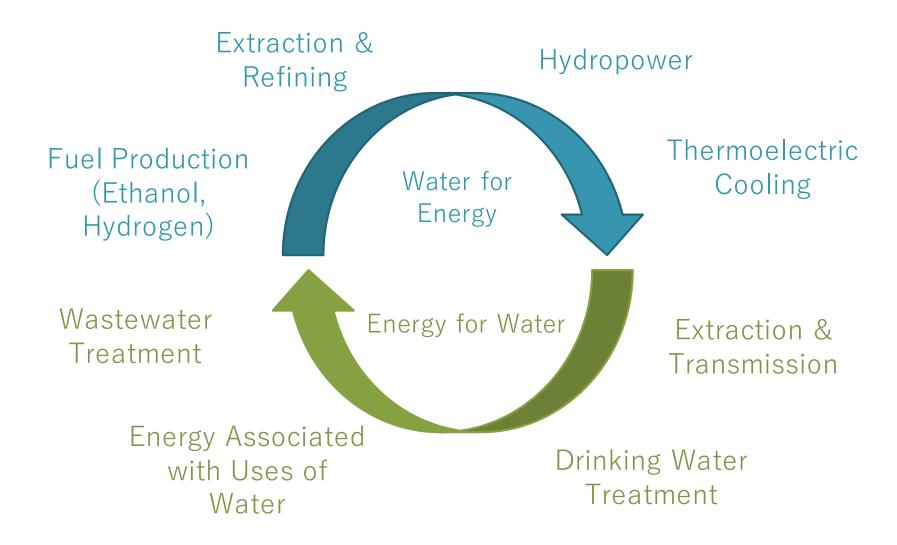
CORE ACTIVITIES

Renewable Energy Generation

Investments

Innovation & Industry Support


Wind Technology Testing Center


Marine Commerce Terminal

Technology Acceleration Programs

Water-Energy Nexus

Innovative Wastewater Treatment Technology Pilots

Authorization:

\$600,000 in FY 2017; \$800,000 in FY18; \$800,000 in FY19

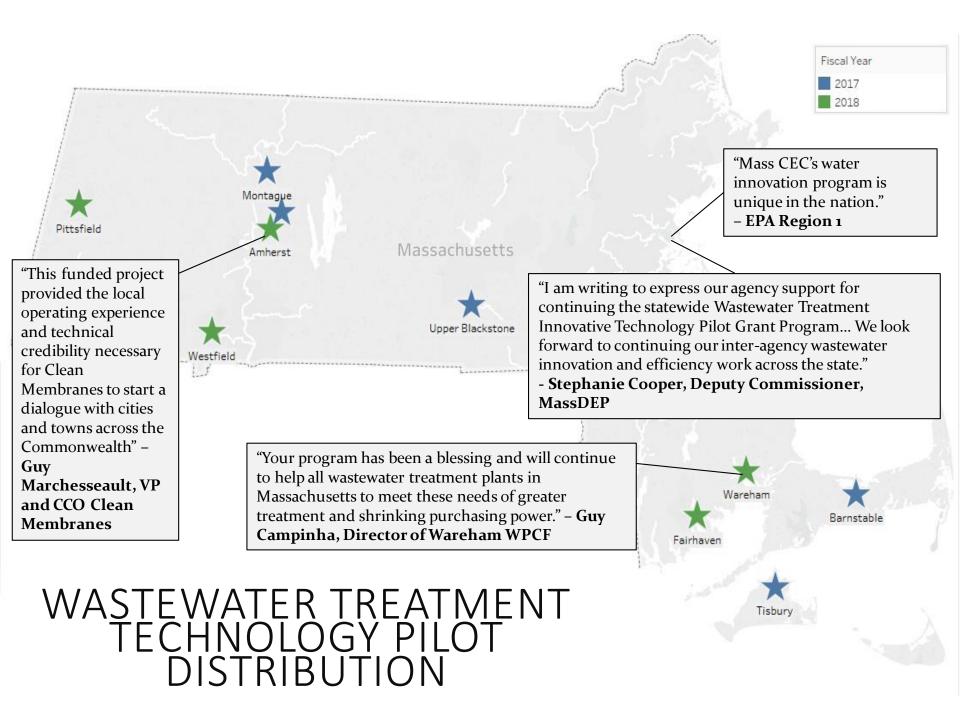
Purpose:

Provide grant funding for public wastewater districts and authorities to demonstrate innovative water technologies that increase energy efficiency.

Details:

5-8 applicant teams (public wastewater district/authority + water technology provider) will each receive up to \$150,000 in demonstration grants. Require 50% cost share

Wastewater Treatment Pilot Program FY 2017 Projects


	Municipality	Technology Partner	Project Details	Project Status
1	Amherst	LIEGO MEMORGOES	Water reuse to irrigate UMass Amherst's athletic fields.	Project complete
2	Upper Blackstone		Resource recovery to produce algae for wastewater treatment.	Project complete
3	Montague	The Water Planet Company	Solids destruction via anaerobic digestion.	Pilot on hold per DEP request
4	Tisbury		Removal of nitrogen from residential Title 5 septic systems.	In process
5	Barnstable		Removal of nitrogen and selected contaminants from residential Title 5 septic systems.	In process

Wastewater Treatment Pilot Program FY 2018 Projects

	Municipality	Technology Partner	Project Details	Project Status
1	Amherst	Nanostone	Ceramic ultrafiltration for potential reuse on UMass Amherst campus	In Process
2	Pittsfield	MICROrganic	Microbial Fuel Cell technology, an energy efficient replacement for traditional wastewater aeration	In Process
3	Wareham	Water Warriors	Microbubble aeration and biomedia filtration to reduce energy for aeration	In Process
4	Westfield	Hach; Woodard & Curran	Ammonia-based aeration control (ABAC) for energy savings and nutrient removal	Will Begin Sept 2018
5	Fairhaven	WesTech; Microvi Biotech; Stantech	Carbon diversion technology and biocatalytic carbon and nitrogen removal for energy and cost savings	Will begin Nov 2018

Amherst secondary wastewater reuse pilot

Goal: Water reuse for surface irrigation.

Objectives: 1) Cost-effectively treat municipal water effluent to irrigate athletic fields, and 2) collect data on operating costs

Pilot Duration: 4.5 Months

Results: Class A reuse standards met. 4.5m gallons of water treated. Module meets the effluent limits for the six parameters (pH, BOD5, TSS, turbidity, fecal coliform, and total nitrogen)

Guy Marchesseault, VP and CCO, Clean Membranes, Inc.

Amherst Wastewater Treatment Plant and Clean Membranes Pilot Site

Project Team

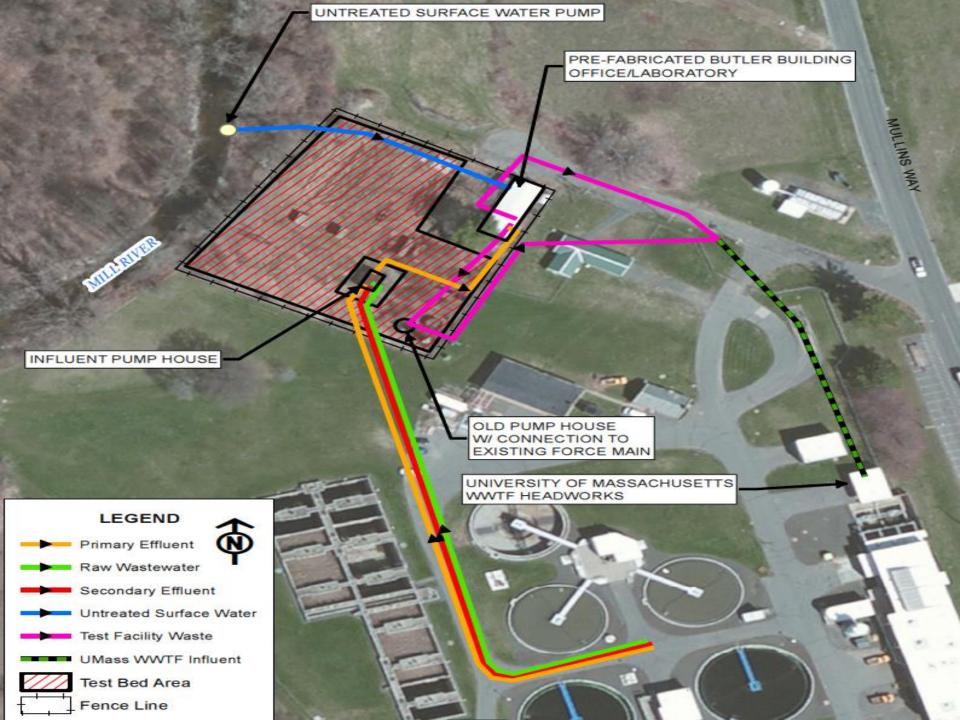
TOA	<u>UMass</u>	<u>Consultants</u>	
Guilford Mooring	David Reckhow	Paul Lambert	
Kimberly Bergeron	Patrick Wittbold	John McArdle	
Duane Klimczyk	Celina Dozier	Thomas Cadoudal	
Amy Rusiecki	Ray Jackson	Olivier Léon	
<u>CM</u>	David Schoen	MassCEC	
Guy Marchesseault	Benjamin McDaniel	Michael Murphy	
Michael Grossman	John Tobiason	Katie Dobbins	
Duong Thuy Ha	Additional grad &		
Katrina Puffer	undergrad students		

Katrina Puffer

Key Potential Benefits

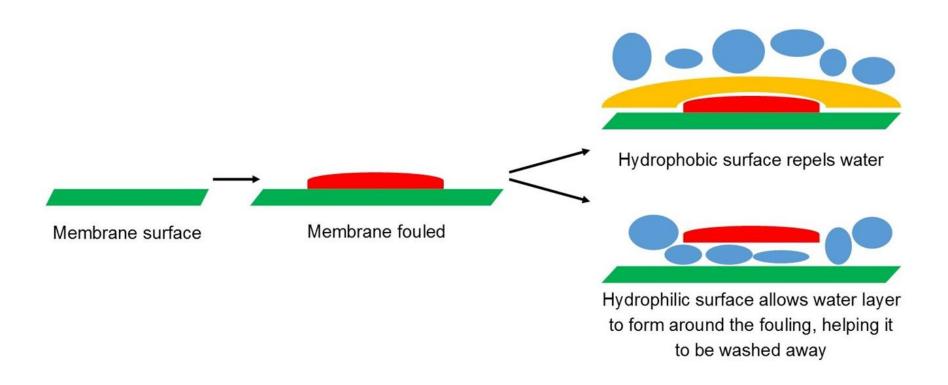
 Energy efficiency for already established water reuse programs (e.g. cooling towers)

 Generating Class A recycled water suitable for additional reuse applications (e.g. irrigation

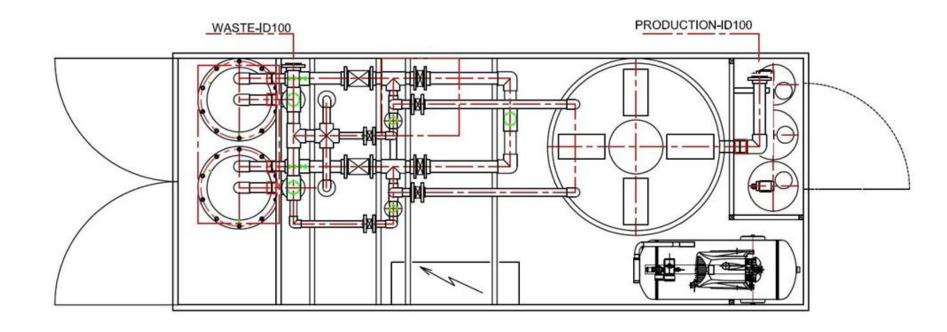


Imagery ©2017 Google, Map data ©2017 Google

High-Capacity Membrane Module



Membrane Surface Properties



Modularized Membrane System

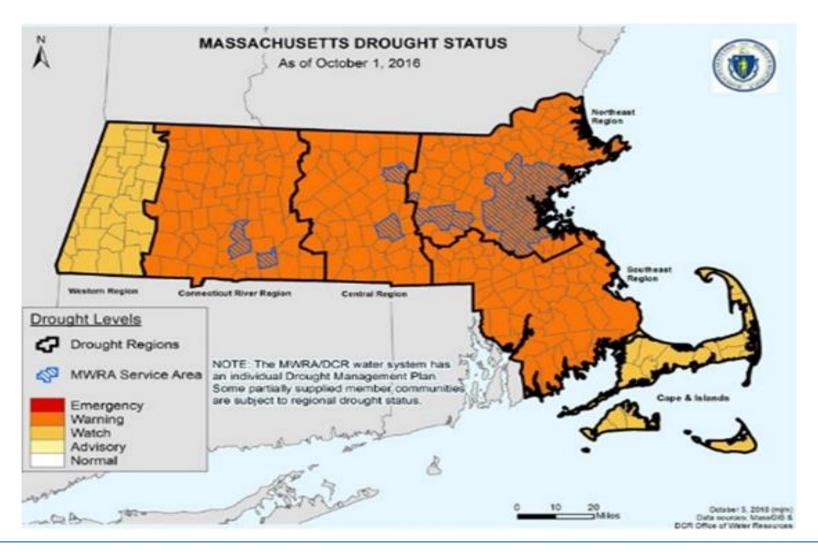
Water Quality Analysis Methodology

Parameter	Laboratory	Analytical Methods	
рН	UMass Amherst	Thermo Scientific Orion Star A329 portable pH/ISE/Conductivity/RDO/DO meter	
BOD ₅	Microbac	Wet-Chem W/SW 5210B-2001	
TSS	TOA	USGS method 1-3765-85	
Turbidity	On-line turbidimeter	Continuous recording turbidimeters Hach Lange SC200 Turbidimeter (influent) Swan AMI Turbiwell Turbidimeter (effluent)	
Fecal coliform	Microbac	SM9222D-1997	
Total nitrogen TOA Sum of N-NO ₃ - (nitrate), N-NO ₂ - (nitrit Kjeldahl Nitrogen): N-NO ₃ - (Hach DR3900 method 10 Dimethylphenol TNT835) N-NO ₂ - (Hach DR3900 method 1 TNT839/TNT840)		 N-NO₃⁻ (Hach DR3900 method 10206 Dimethylphenol TNT835) N-NO₂⁻ (Hach DR3900 method 10207 Diazotization TNT839/TNT840) 	

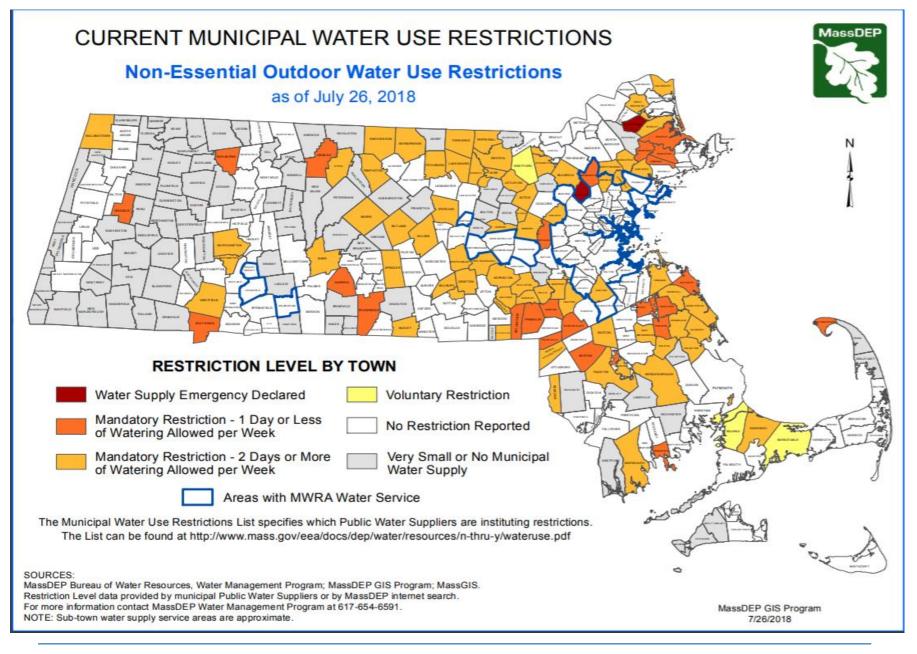
Water Quality Results

Parameters	Class A Reclaimed Water Effluent limits, 314 CMR 20.17	Pilot Effluent
рН	6.5-8.5	6.79-6.96
BOD ₅	<10 mg/L	<2 mg/L (BDL ¹)
TSS	<5 mg/L	0-0.2 mg/L
Turbidity	Average of <2 NTU within a 24-hour period Not >5 NTU more than 5% of the time within a 24-hour period Not >10 NTU at any time	0.039-0.141 NTU (average of a 24-hour period) No results >5 NTU
Fecal coliform	Median of no detectable fecal coliform/100 ml over continuous seven-day sampling periods Not to exceed 14/100 mL in any one sample	<1 CFU/100 mL (BDL¹ in all samples)
TN	<10 mg/L	5.463-6.416 mg/L

¹Below detection limit



Pilot System Energy Cost Projection


Frequency	Energy Usage (kWh)	Energy Cost (\$)	Demand Cost (\$)	Total Costs (\$)
Daily	6	\$0.66	1	-
Weekly	42	\$4.62	1	-
Monthly	183	\$20.11	\$4.50	\$24.61
Annual	2,193	\$241.27	\$54.05	\$295.32

Implications and Path Forward

Amherst Reuse Pilot

Please connect with us

Follow us on social media

Sign up for our Daily News Digest, Events Newsletter and more!

masscec.com/email-updates

—Questions and Discussion

