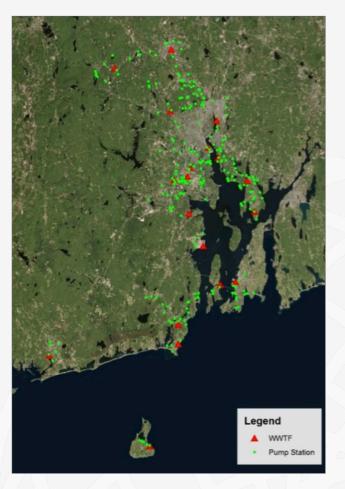

How the Goal of Resiliency is Influencing Rhode Island's Wastewater Projects


Wastewater Treatment Facility Vulnerability

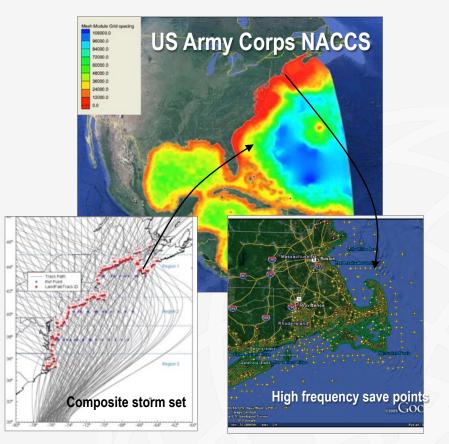
- WWTFs and pump stations are built in low lying areas
- Infrastructure is subject to coastal and riverine inundation
- Structures, wet wells, open tanks, equipment, and staff are vulnerable
- Overflows discharge into adjacent surface waters

RIDEM's Statewide Approach to Resiliency Planning for Wastewater Infrastructure

- Major modifications to WWTFs require long term planning
- Benefit to collaborative partnership among state agencies and local communities
- Improving WWTF reliability under changing climate conditions requires implementation at the local level
- Resulting Scope had state-wide and local components:
 - Statewide assessment of 19 WWTFs and major collection components
 - Identify vulnerabilities
 - > Identify short-term and long-term adaptive strategies

The Warren WWTF planned improvements offered an opportunity to implement RIDEM's climate resiliency planning study

- The upgrade was 30% designed when the RIDEM WWTF climate resiliency study began
- The RIDEM study findings informed design modifications that incorporated climate resiliency into the planned improvements
- The Warren project drove the development of RIDEM's state-wide guidance for WWTFs to address climate change in planning and design

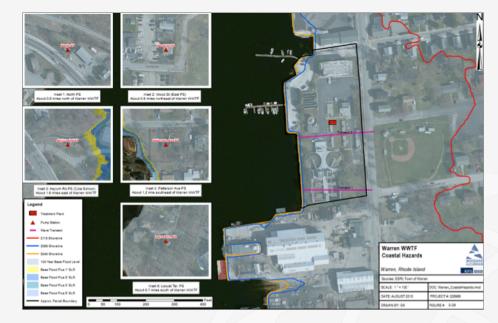


Preliminary Assessment of Climate Change Impacts to Rhode Island WWTFs

1. Data Collection From Facility Operators

2. Statewide Modeling Applications

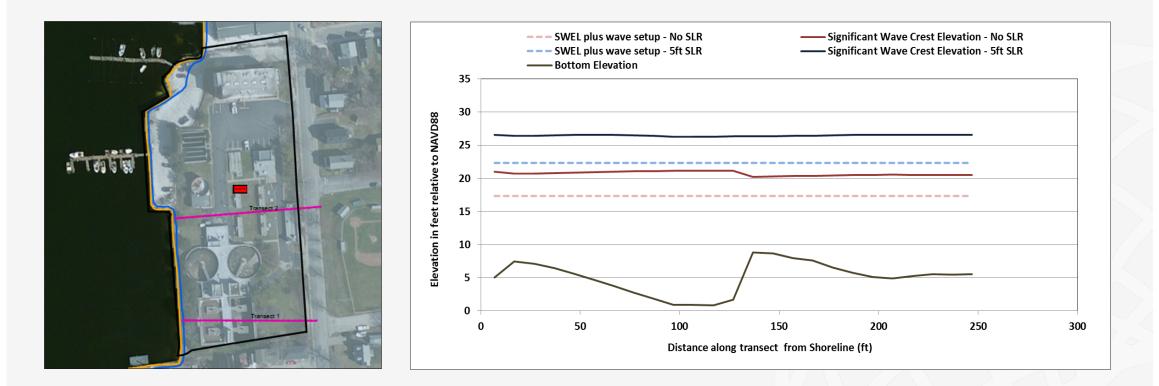
Preliminary Assessment – Operator Input


ENERAL INFORMATIC	N							
Contact Name:	JOSE DASIL\							
Work Phone:	253-8877							
Cell Phone:	(401) 4	180 - 720	1					
Facility Name and Main A	ddress:	Design Flow Capacity (MGD)	Average Daily Flow (MGD)	Year Constructed	Most Recent Upgrade Date			
Bristol WWTF		3.8	2.8		nead works			
2 Plant Street					2015 Declarent			
Bristol, RI 02809					RBC Replace			
Pump Stations & CSOs -	List Locations:	Capacity	Average Daily Flow	Year Constructed	Most Recent Upgrade Date			
58 Fe								
59 Ma								
61 Co								
QUEST			main from 0000	meneral that he	aureal at your feather an			
colle	ched is a listing of re ction system.	ported non-standard e	wents from 2009 to p	wesent that have or	ccurred at your facility or			
65 Cc					ent-flooding, freezing,			
66 Si	storm surge, excessive heat, etcand include any additional information that would be helpful to explain the challenges you faced.							
67 Cc	 Also, please note those events that you feel could reoccur under conditions related to natural hazards. 							
701.e	 Then please add other events that occurred in that time at your WPCF, pumping stations, or CSOs where there was direct damage or the threat of damage from natural events. Please provide as much 							
		le. This can include an						
72 M								
mag	Above is a listing of wastewater pumping stations that the state and DEM have on file in our GIS database. Also, a GIS map of these stations can be found here. Please review and make any additions corrections so that we may update our							
80 Ki	rds for this project and	i future efforts.						
81 Br 3 Dor	Peak was faithe as a sector station have undersmoot fiel stream tasks that are subject to A							
	Does your facility or pumping station have underground fuel storage tanks that are subject to flooding?							
obs	tacles? If so, what acc	pumping stations, or C8 ess roads have been aff st it falls) that has caused	ected and by what obs	d during storm event tacle? If rain-related,	s due to flooding or other please estimale (if you can)			
5. Are	any parts of the facilit	y or pumping stations pr	otocled by a berm or o	ther means to prever	t floodwaters from entering?			
6. Wh pre	at process constraints cipitation, drought, elic	are you aware of that ha ?	we been (or may be) w	iorsened by natural e	wents, such as increased			
win	e any site mitigation p dows/doors, moving e nts? If so, please sum	rojects been done at yo lectrical equipment to hig marize.	ur facility or pump stati pher locations, etc.) in r	ons? (i.e. roof replace response to the Marc	ement, storm h 2010 floods or other			
8. Ho	v would you like to imp	wowe standby power cap	ebilities at your plant o	r stations?				
9. Do had	Do you have access to spare pumps, generators, of other support from other utilities for use in an emergency? Have you had to acquire and use such equipment in the past?							
10. Wh	at are some other maj	or issues that your facilit	y is facing or has faced	i in the past? In other	r words, what vorries you ou feel is important to share			

Facility	Location on FEMA FIRM	Value	Hazard History	Value	Documented losses and costs since 2009	Value	Value	Infrastructure Inundation	Value	Projection of Inundation	Value	TOTAL
East Providence WWTF	Within V Zone	3	More than 3 since 2009	3	Major Repairs	3	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	15
Warren United Water	Within V Zone	3	2-3 since 2009	2	None	1	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	12
Cranston WPCF	Within A Zone	2	2-3 since 2009	2	Major Repairs	3	0	Between 10% and 50% system capacity loss under 5-ft scenario	2	Between 10% and 50% system capacity loss for 1-ft impacts	2	11
Quonset Development Corporation	Within V Zone	3	1 or less since 2009	1	None	1	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	11
Bristol WWTF	Within X Zone	1	2-3 since 2009	2	Major Repairs	3	0	Between 10% and 50% system capacity loss under 5-ft scenario	2	Between 10% and 50% system capacity loss for 1-ft impacts	2	10
East Greenwich WWTF	Within A Zone	2	1 or less since 2009	1	None	1	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	10
West Warwick Regional WWTF	Within A Zone	2	1 or less since 2009	1	Major Repairs	3	0	Greater than 50% system capacity loss under 5-ft scenario	3	Less than 10% system capacity loss for 1-ft impacts	1	10
NBC Bucklin Point WWTF	Within X Zone	1	1 or less since 2009	1	None	1	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	9
NBC Fields Point WWTF	Within X Zone	1	1 or less since 2009	1	None	1	0	Greater than 50% system capacity loss under 5-ft scenario	3	Greater than 50% system capacity loss for 1-ft impacts	3	9
Newport WWTF	Within X Zone	1	More than 3 since 2009	3	None	1	0	Between 10% and 50% system capacity loss under 5-ft scenario	2	Between 10% and 50% system capacity loss for 1-ft impacts	2	9
Warwick Sewer Authority	Within X Zone	1	1 or less since 2009	1	Major Repairs	3	0	Between 10% and 50% system capacity loss under 5-ft scenario	2	Between 10% and 50% system capacity loss for 1-ft impacts	2	9
Westerly United Water	Within X Zone	1	2-3 since 2009	2	Major Repairs	3	0	Less than 10% system capacity loss under 5-ft scenario	1	Between 10% and 50% system capacity loss for 1-ft impacts	2	9
Jamestown Sewer Division	Within X Zone	1	2-3 since 2009	2	Miscellaneous Expenses	2	0	Less than 10% system capacity loss under 5-ft scenario	1	Between 10% and 50% system capacity loss for 1-ft impacts	2	8
Narragansett WWTF	Within V Zone	3	2-3 since 2009	2	None	1	0	Less than 10% system capacity loss under 5-ft scenario	1	Less than 10% system capacity loss for 1-ft impacts	1	8
South Kingstown Regional WWTF	Within X Zone	1	2-3 since 2009	2	None	1	0	Between 10% and 50% system capacity loss under 5-ft scenario	2	Between 10% and 50% system capacity loss for 1-ft impacts	2	8
Woonsocket WWTF	Within X Zone	1	1 or less since 2009	1	Major Repairs	3	0	Less than 10% system capacity loss under 5-ft scenario	1	Less than 10% system capacity loss for 1-ft impacts	1	7
Burrillville WWTF	Within A Zone	2	1 or less since 2009	1	None	1	0	Less than 10% system capacity loss under 5-ft scenario	1	Less than 10% system capacity loss for 1-ft impacts	1	6
New Shoreham Sewer Division	Within X Zone	1	1 or less since 2009	1	None	1	0	Less than 10% system capacity loss under 5-ft scenario	1	Less than 10% system capacity loss for 1-ft impacts	1	5
Smithfield Veolia Water	Within X Zone	1	1 or less since 2009	1	None	1	0	Less than 10% system capacity loss under 5-ft scenario	1	Less than 10% system capacity loss for 1-ft impacts	1	5

Preliminary Assessment – Coastal Hazards

- Applied University of Rhode Island STORMTOOLS data as a broad planning tool
- WWTF infrastructure at risk to inundation by storm surge and SLR:
 - ≻ 11 WWTFs
 - ≻ 49 Pump stations
- Inundation of entire Warren WWTF and beyond during a 100-year storm



Preliminary Assessment – Wave Hazards

 Wave Height Analysis for Flood Insurance Studies (WHAFIS) predictions for total water level at 8 WWTFs (19 transects)

Recommended Adaptive Strategies

- Hardening
- Relocation
- Readily Repairable/Replaceable
- Redundancy
- Wet Weather Bypass

Budgetary Implementation Costs

Help communities plan and budget for climate change resiliency projects

Adaptive Strategies							
System	Hardening	Relocating	Readily Repairable/ Replaceable	Mitigation Strategy			
Primary Settling Tank		В		Allow primary settling tanks to flood. Locate collector drives above flood elevation. ¹ Store replacement drive components on site. Pumps may be temporarily augmented. ²			
Electrical Switchgear and Motor Control Centers		С		Relocate above flood elevation. ¹			
Disinfection System (Chlorine Contact Tanks)		В		Locate mixer drive above flood elevation or install submersible mixer. ¹			
Operations Building		В	В	Allow pumps in station basement to flood. Electrical switchgear, MCCs and SCADA equipment above flood elevation. ¹			

¹Adaptive measures planned for implementation in the near term as part of the proposed WWTF Upgrades project.

²Adaptive measures that the Town of Warren may consider implementing at a future time.

A = <\$50,000 B = \$50,000 - \$250,000 C = \$250,000 - \$1,000,000 D = > \$1,000,000

RIDEM Actions Resulting from this Study

Issued state-wide guidance to address climate change in WWTF planning and design

WOODARD

& CURRAN

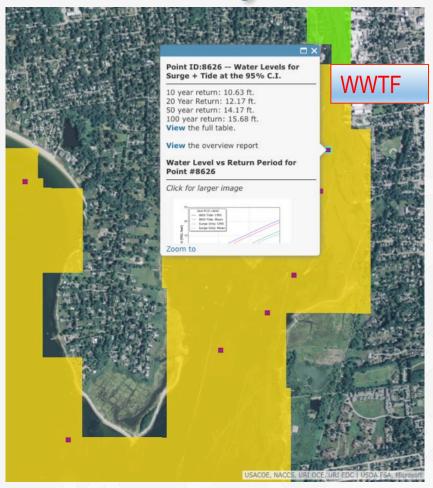
- Established a cost-benefit analyses approach to implement adaptation measures
- Implemented a requirement for all RIPDES permit renewals to prepare a Climate Resiliency Plan

Warren WWTF became the first facility in RI to integrate flood protection measures from the RIDEM climate change study Warren WWTF 2 MGD Facility on the tidally influenced Warren River

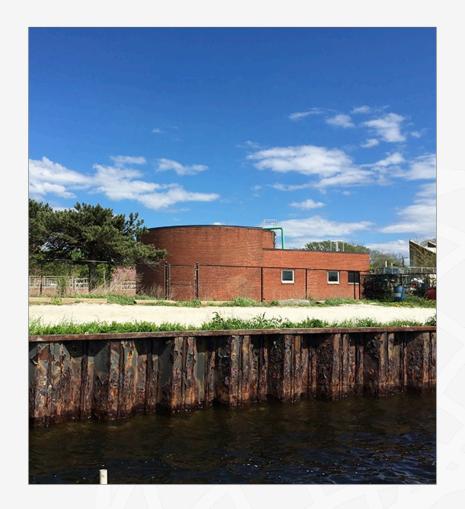
Water St

Summary of Planned Treatment Improvements

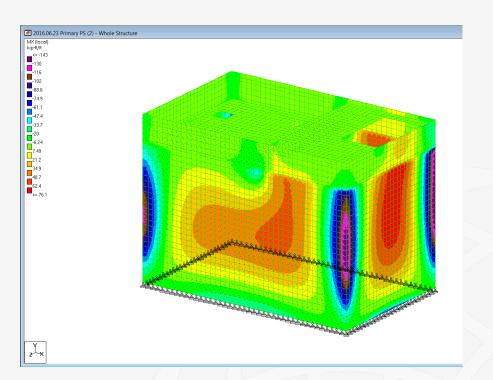
- Influent Screening
- Upgrade Primary Settling
- Expand Secondary Reactor Capacity and New Equipment for Nitrogen Removal
- Upgrade Secondary Clarification
- Disinfection Improvements
- New Electrical Service, Generator and Switchgear
- SCADA Upgrades


Reassessed Design to Consider Climate Change

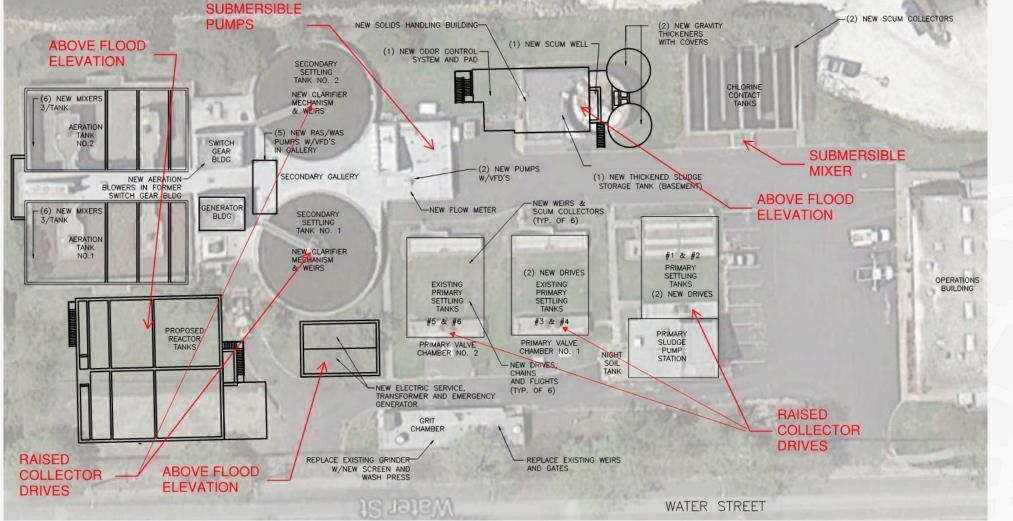
- Town wanted to make sure the \$20M investment was appropriately addressing vulnerability to flooding and climate change
- Collaborated with RIDEM and CRMC to establish design flood conditions for the project
 - > STORMTOOLS
 - Federal Flood Risk Management Standard
 - North Atlantic Coast Comprehensive Study 100-year flood elevation (storm surge plus tide)
 - > ST Wave Analysis by University of Rhode Island
 - Sea Level Rise Projections (2065) by National Oceanic and Atmospheric Administration


North Atlantic Coast Comprehensive Study

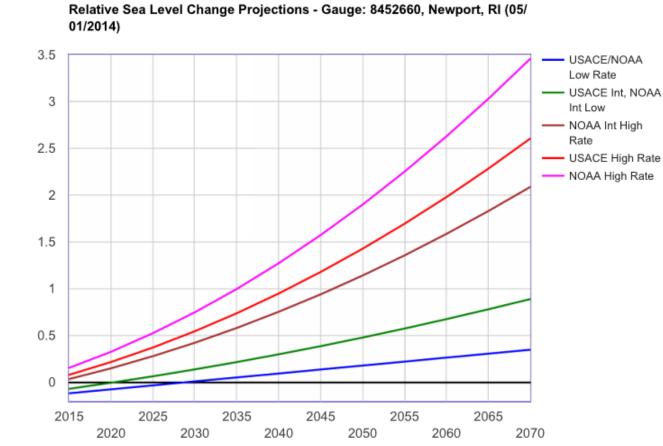
- Two-year study by Army Corp of Engineers to address coastal storm and flood risk
- Areas in the United States' North Atlantic region affected by Hurricane Sandy
- Hydrodynamic model predictions for synthetic tropical storms
- Model includes 1,000 grid locations in Narragansett Bay and RI Shoreline
- One of the grid locations is approximately ½ mile from the WWTF


Revised Flood Criteria Effect on Improvements

- Warren worked with RIDEM and utilized the New England Interstate Water Pollution Control Commission, revised TR-16 Guidance (May 2016) to perform a cost benefit approach to selecting adaptation measures.
- Effect on Wastewater Facility Improvements Design
 - New structures flood resilient at 1% probability (100-year) flood with Sea Level Rise (SLR)
 - Existing tanks flood resilient at 1% flood with SLR
 - Existing buildings and galleries will flood at the 1% flood with SLR

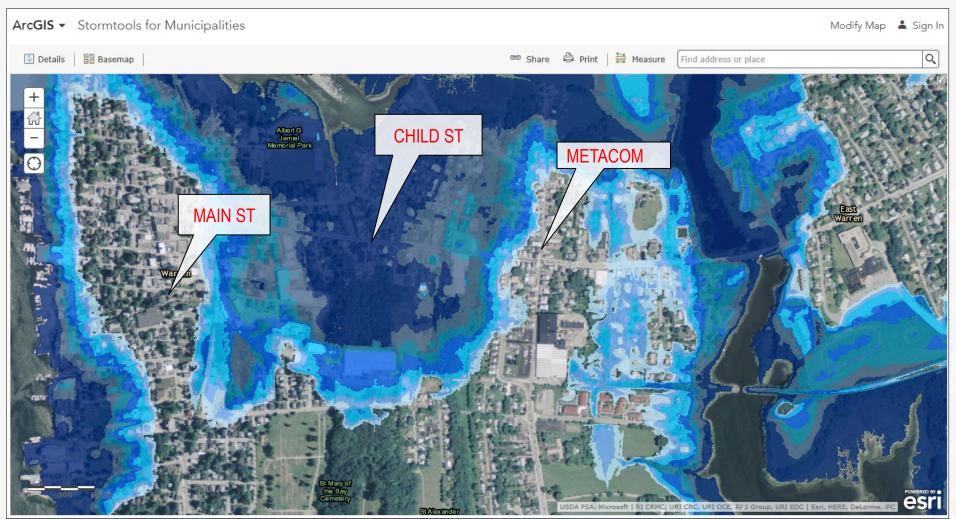


- Analysis to establish that the existing facilities were being "improved to the maximum extent possible for flood protection" based on costbenefit criteria
- Protection from Damage to Structural and Electrical
 - Base-case measures (relatively minor in cost)
 - > Analysis of additional structural improvements
 - Buoyancy
 - Hydrostatic forces
 - More cost effective to repair equipment vs. make structural improvements to keep water out


Resulting Improvements for Flood Reslience

RSLC in feet (NAVD88)

Year



1 Percent Flood Elevations at the WWTF

		FEMA Stillwater	FEMA Wave Crest	NACCS Storm Surge w/ SLR (Design)	STORM-TOOLS Storm Surge	WHAFIS Model Wave Crest
WWTF Structures	Elevation	11.4	13.4	16	18	21
Ground Surface (average)	8	-3.4	-5.4	-8	-10.0	-13.0
Headworks	11.7	0.3	-1.7	-4	-6.3	-9.3
Primary Sludge Pump Station, Intermediate Pump Station, Secondary Gallery, Secondary Clarifiers	14.5	3.1	1.1	-1.5	-3.5	-6.5
Operations Building 1st Floor, New Sludge Handling Building, New Generator Pad	15.2	3.8	1.8	-1	-2.8	-5.8
Aeration Tanks	17.7	6.3	4.3	2	-0.3	-3.3
New Reactor Tank	20.5	9.1	7.1	4.5	2.5	-0.5

Positive values (black) represent distance above water level. Negative values (red) represent distance below water level.

Stormtools 1-Percent Flood with 1 Foot of Sea Level Rise

Comparison of Climate Change Resiliency Measures

The highlighted items are measures Woodard & Curran has added since the January 9th meeting, making resiliency essentially equivalent to the original design

Structure	Climate Change Resiliency Measures Original Design	Climate Change Resiliency Measures Rebid Scope (Measures are in Base Bid Unless Noted)			
Operations Building	Electrical switch gear located on the second floor. Motor control centers (MCCs) located on second floor Control panels (SCADA) above 16 feet	Electrical switch gear above 16 feet MCCs safe at 16 feet* Control panels above 16 feet			
Headworks	Control panels above 16 feet	Control panels above 16 feet			
Primary Sludge Pump Station	MCC on concrete pad above 16 feet NAVD88	MCC safe at 16 feet*			
Primary Settling Tanks	Locate collector drives above 16 feet	Original design (bid alternate 2)			
Intermediate Pump Station	Install two new dry-pit submersible pumps Control panels above 16 feet	Original design (bid alternate 1)			
Existing Generator Building – repurposed to house new MCC	MCC on elevated slab located above 16 feet	Original design			
Switch Gear Building	MCC on elevated slab located above 16 feet	Modifications to prevent water from entering building (bid alternate 1)			
Secondary Clarifiers	Locate collector drives above elevation 16 feet	Original design			
Chlorine Contact Tank	Install submersible mixer	Original design (bid alternate 1)			
New Sludge Handling Building	Constructed above elevation 16 feet	Original design (bid alternate 4)			
New Reactor Tank	Constructed above elevation 16 feet	Original design			
New Generator Pad	Constructed above elevation 16 feet	Original design			

*MCCs will require cleaning and inspection (if water elevation greater than 15.5 feet occurs)