Increasing Resilience through Intelligent Water Management

Agenda

Resiliency and stormwater
Opti's CMAC technology
Project Case Studies

Beckley, WV
Ormond Beach, FL
NYC:RISE

Resiliency and Stormwater

- Resiliency is the ability to prepare for, absorb, recover from, and adapt to abrupt disturbances and persistent stress
- Climate change impacts on water resources
 - \circ \uparrow frequency of heavy precipitation events across the U.S.
 - \circ \uparrow streamflow in the eastern U.S.
 - $\circ \downarrow$ duration and extent of snow cover in most of North America
 - \circ \uparrow periods of drought in the West

Intelligent Stormwater Management

Passive

Adaptive

Infrastructure is designed and set for modeled conditions

Infrastructure can be adapted over time

Active + Adaptive

Infrastructure reacts to current and forecast conditions

[®] Opti

Opti Continuous Monitoring and Adaptive Control (CMAC)

- Real-time asset visibility and alerting
- Automated forecast-based discharge control
- Adaptable controls
- Built on modern, secure cloud architecture
- Web-based dashboards

Absorb and adapt to persistent stress

- Pre-conditions:
 - Consistent flooding of major roadway
 - Passive pond built in 2013 to address flooding
 - Still experiencing infrastructure damage

Absorb

"iPond" project (Feb. 2017) adding CMAC technology to passive pond

Controlling outflow before, during and after wet weather

- Compare real-time data to previous assumptions
- Weir 1 retrofit: increased capacity from ~43,000 cf to 77,000 cf.

Measureable Downstream Flood Mitigation

- Reduced Discharge Rate
- Reduced Water Elevations

Plan, prepare, and absorb abrupt disturbances

- Pre-conditions:
 - 2009 flood caused >\$50 million in damages
 - Majority of City below 10 ft MSL

Source: The Daytona Beach News-Journal, October 2016

Plan: interconnect 5 existing lakes

 Utilize existing pump station
 \$3.4 million project
 250 acre-ft of combined storage
 7,680 acre drainage basin

 Opti CMAC installed at pump station

- Prepare: Hurricane Irma
 Opti CMAC performs pre-stormevent-drawdown
 - 70 acre-ft discharged in advance of Irma
- Automated pump fault alerting

 Pumps failed 48 hours in advance of Irma, City repaired in advance of Irma

Absorb: Opti CMAC avoids flooding during Irma
Real-time information to City's storm command center

Resiliency in NYC

Recovery and adaptation to Hurricane Sandy

Collaboration with Geosyntec and Boomi Environmental

Purpose: provide small business owners with actionable alerts to protect their property from flooding.

Resiliency in NYC

Model combines Weather and Tide forecasts to provide realtime inundation risk

alerts

- Alerts are specific to location, and actionable (forecast inundation depth, Site-Specific Risk Level)
- Beneficiaries get access to sitespecific dashboards

Conclusions

- Tackling resiliency can look differently based on needs and context
- Data availability and format
 - Right place, right time
- Help with planning and absorption
 - Data collection
- Automatic processes where possible

Questions?

Scott Simpson Project Deployment Team Lead ssimpson@optirtc.com Dayton Marchese Water Resources Engineer dmarchese@optirtc.com Tatjana Toeldte Deployment Engineer ttoeldte@optirtc.com