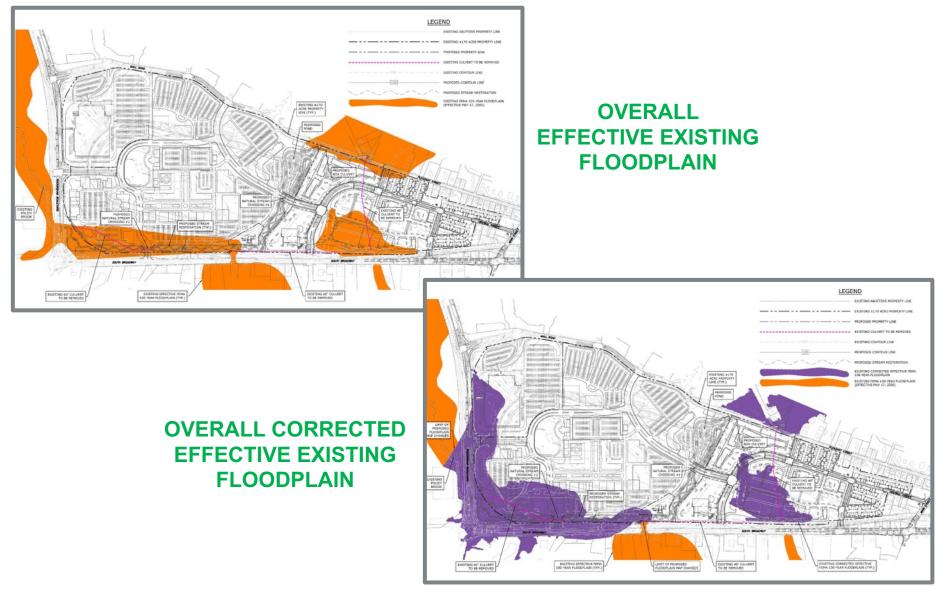

PRIVATE DEVELOPMENT - PUBLIC BENEFIT

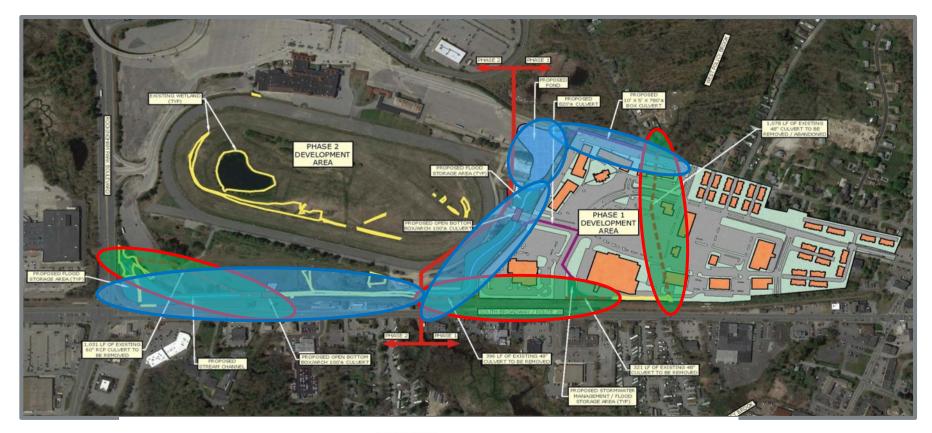
Tuscan Village Floodplain Improvements in Salem, NH

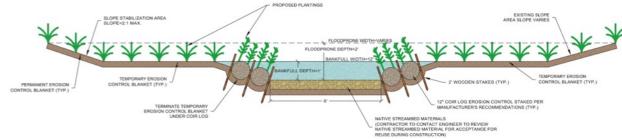
Joseph M. Persechino, P.E. David L. Azinheira, P.E., CFM

Tuscan Village Masterplan



The Problem - Existing Floodplain Limits


Tighe&Bond

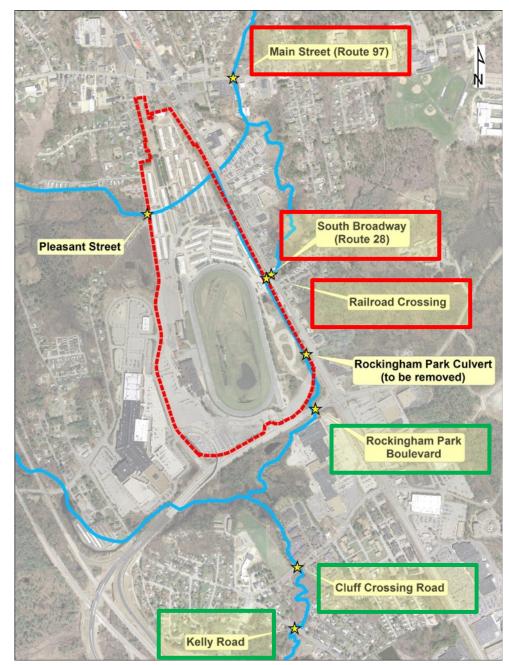

The Solution – Propose New Floodplain Limits

Conceptual Stream Restoration and Floodplain Improvement Plan

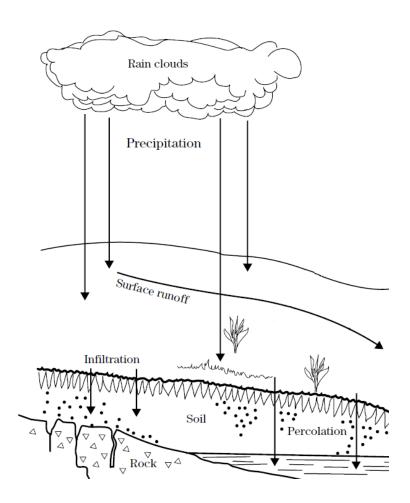
Modeling Approach

Onsite Model Components

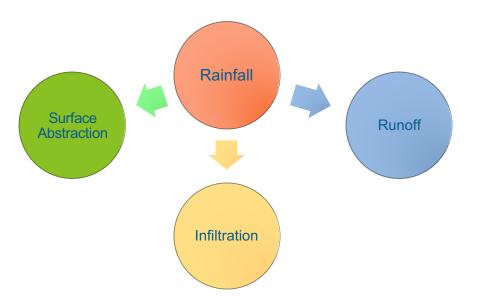
- Culvert "A" and "B" / Pleasant Street
- Policy Brook
- Rockingham Park Culvert
- Near site Model
 Component
 - Sediment Blocking
 Downstream Culvert



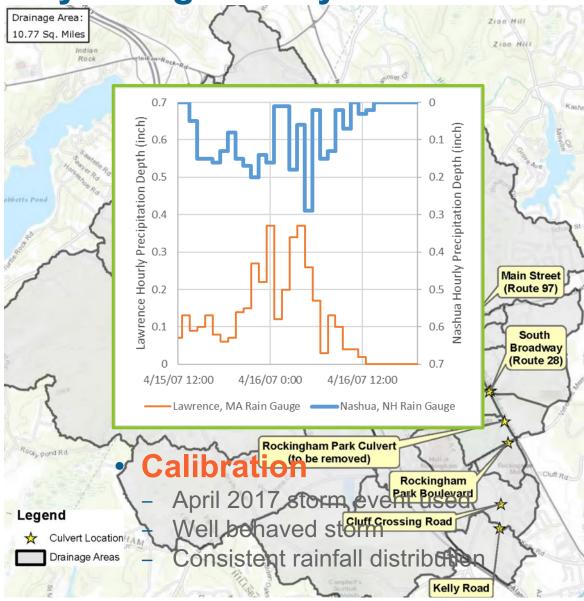
Modeling Approach


Offsite Model Components

- Upstream of Site
 - Main Street (Route 97)
 - South Broadway (Route 28)
 - Railroad Crossing
- Downstream of Site
 - Rockingham Park Boulevard
 - Cluff Crossing Road
 - Kelly Road



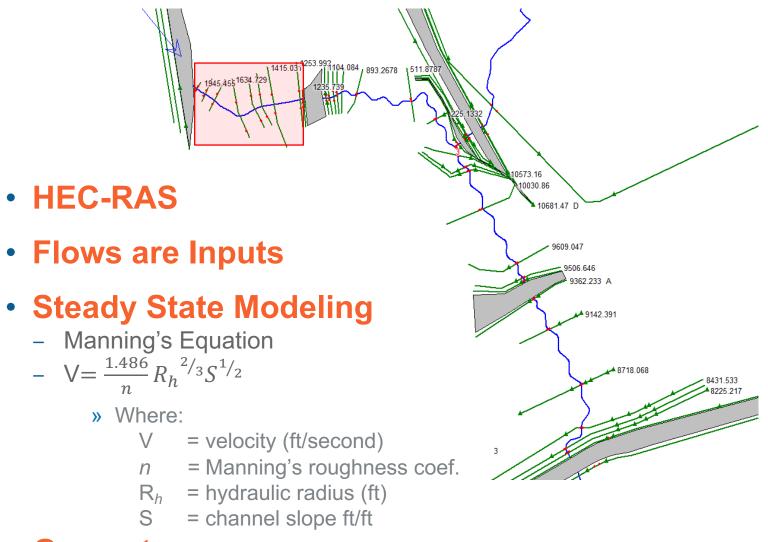
Hydrology - Overview



- Science of hydrologic cycle (water)
- What is the flow of water?
 - 2-percent-annual chance flood (50-year frequency storm)

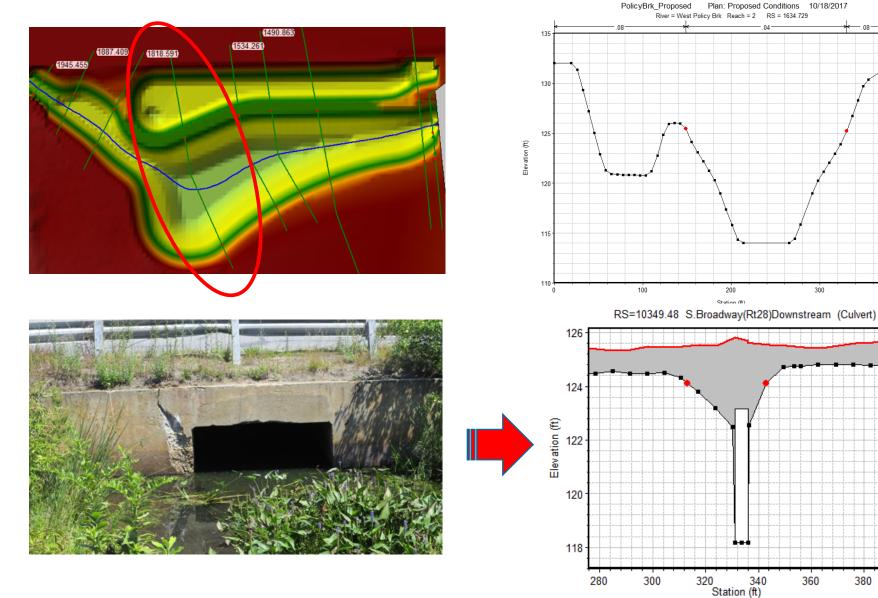
Hydrologic Analysis

• HEC-HMS


- Drainage Area
 - 10.8 Square Miles
 - 17 Sub-catchments

Approach

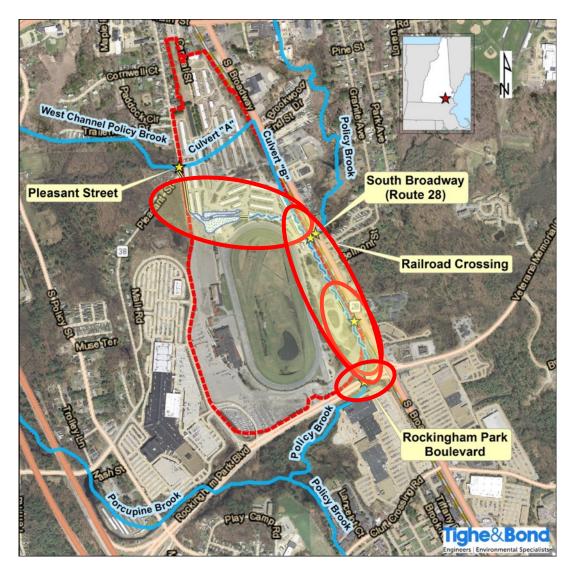
- Infiltration:
 - Curve Number
- Time of Concentration:
 Velocity Method
- Routing:
 Muskingum-Cunge
 - Precipitation - NOAA Atlas 14


Hydraulics - Overview

Tighe&Bond

Geometry

Hydraulic Analysis


Tighe&Bond

400

Hydraulic Analysis – Proposed Conditions

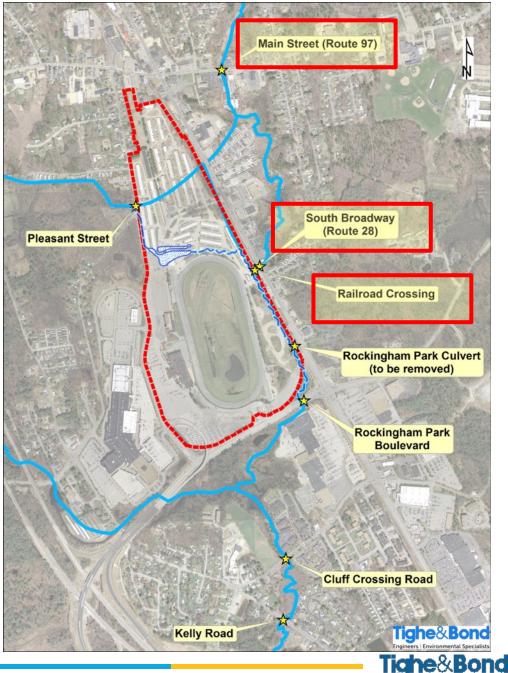
Stream Daylighting

- West Channel (center of site)
- Rockingham Park Culvert (south east of site)
- Stream Restoration
- Sediment Removal
- Proposed Culverts
 - Replacement of Pleasant Street Culvert
 - Bridged as part of redevelopment
 - Culverts sized for 50-year storm event

Hydraulic Analysis – Objectives/Results

 Representation of existing conditions

Location	Approx. Min. Elevation to	Upstream Water Surface Elevations ⁴ (NGVD29)					
Location	Overtop Road		10-year	25-year	50-year	100-year	
Main Street (Route 97) ¹	127.5	124.1	128.0	128.1	128.3	128.5	
Pleasant Street ²	130.3	127.0	130.6	130.9	131.1	131.1	
South Broadway (Route 28) ³	125.6	123.3	125.8	126.4	127.0	127.4	
Railroad Bridge ³	125.7	123.2	125.3	126.4	127.0	127.4	
Rockingham Park Boulevard ³	126.5	120.2	121.4	123.6	126.7	126.7	
Cluff Crossing Road ³	122.8	116.3	120.4	122.5	124.1	124.6	
Kelley Road ³	117.3	114.1	116.7	118.0	118.8	119.8	


- Evaluation of proposed design
- Assessment of increased resiliency

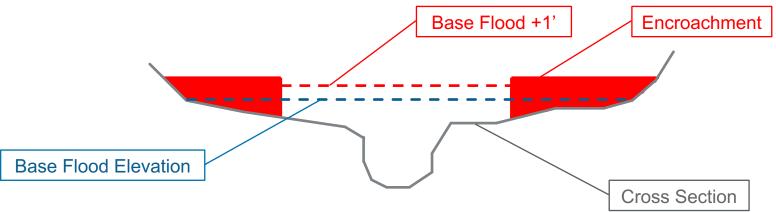
Location	Approx. Min. Elevation to	Upstream Water Surface Elevations ⁴ (NGVD29)					
Location	Overtop Road	2-year	10-year	25-year	50-year	100-year	
Main Street (Route 97) ¹	127.5	124.1	127.9	128.1	128.3	128.5	
Pleasant Street ²	130.3	125.7	127.7	129.1	129.9	131.2	
South Broadway (Route 28) ³	125.6	120.9	123.1	125.1	126.2	127.6	
Railroad Bridge ³	125.7	120.8	123.0	124.9	126.2	127.6	
Rockingham Park Boulevard ³	126.5	120.2	122.0	124.2	125.4	126.7	
Cluff Crossing Road ³	122.8	116.3	120.9	123.3	124.2	124.4	
Kelley Road ³	117.3	114.1	117.1	118.2	119.0	119.7	

Hydraulic Analysis – Public Benefit

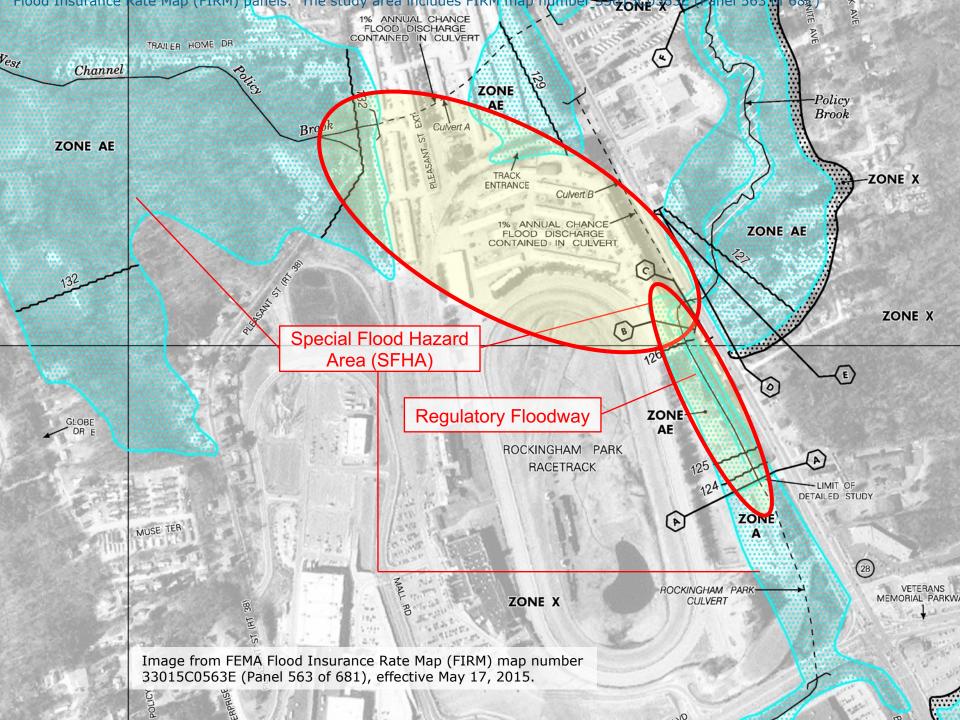
- Services Beyond Typical Design Scope
 - Alternatives for potential future improvements by the Town of Salem
 - Three undersized culverts upstream of site considered
 - Recommendations developed in coordination with the Town of Salem

Hydraulic Analysis – Public Benefit (cont.)

Storm Return	Water Surface Elevation Upstream of South Broadway (Route 28)						
Frequency	Existing	Proposed	Scenario "A"	Scenario "B"	Scenario "C"	Scenario "D"	
10-year	125.8	123.1	123.1	122.9	122.8	122.9	
25-year	126.4	125.1	124.2	124.8	124.7	124.9	
50-year	127.0	126.2	125.7	126.1	126.0	126.0	
100-year	127.4	127.6	127.6	127.4	127.6	127.6	

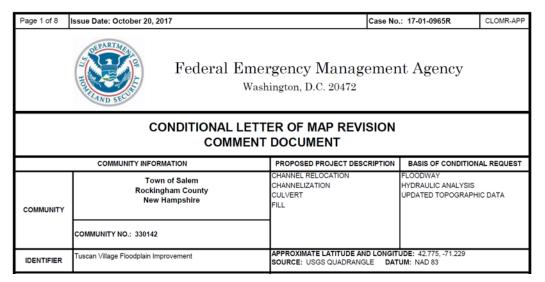

• How does this all tie into FEMA requirements?

- Evaluation of alternatives did not play role
- Portions of the hydraulic model used


CLOMR – FEMA Definitions

- Base Flood = 1-percent annual chance flood = "100-year flood"
- Special Flood Hazard Area (SFHA) = The land area covered by the floodwaters of the base flood = 100-year floodplain
- Regulatory Floodway = Area to be kept free of encroachments so base flood can be conveyed without causing an increase of a specified elevation (typically 1-foot)

- LOMR = Letter of Map Revision
 - Required after changes are made that impact FEMA Flood Insurance Study
- CLOMR = Condition Letter of Map Revision
 - Required **PRIOR** to **CERTAIN** changes


CLOMR – Background

Why a CLOMR was required

- Stream restoration modified regulatory floodway
- Previous modeling did not account for backwater from downstream culverts
- New SFHA for areas without a regulated floodway established

CLOMR Requirements

- Narrative
- MT-2 Application Form
- Hydrologic Analysis (if applicable)
- Hydraulic Analysis
- Certified Topographic Work Map
- Annotated FIRM
- Endangered Species Act Compliance
- Documentation of legal notice to affected property owners

Tighe&Bond

CLOMR – Modeling and Extent

E	RECZ RELEAS	- 01		100 100		
	ODIFICATIO		,52			
***	********	*******	*******		*******	•
C						
T1	SALEM.	NEN HAMP	SHIRE FLO	OD INSU	RANCE STUD	Y
15	POLIC	Y AND UNNA	MED BRODK	5	and a second second	
13	10-YE	AR FLOOD	9%350 CF	S		
J1	ICHECK	ING	NINV	IDIR	STRT	METRIC
	-1.	2.	0.	0.	0.000000	0,00
32	NPROF	IPLOT	PREVS	XSECV	XSECH	FN
	1.000	0.000	-1.000	0.0	0.0	00 0.000
NC	.080	.08		035	.300	.500
TO	4,000	350,000	0 550.0	000	660,000	880.000
		1060 FT	DOWNSTRE	M OF RE	BRIDGE	
×1	0.000	14.000	227.0	000	260,000	0.000
GR	124,300	0,000			55,000	125,800
R	124.300	227,000	119.1	700	242.000	117,800
R	123,100	340,000	123.5	500	415,000	123,800
		30 FT D0	WNSTREAM	OF RR B	RIDGE	
1	10,300	13.000	557.0	000	585.000	1030.000
R	130,000	0,000	123,9	000	505,000	126.500
R	120.000	505,000			570.000	120.000
R	120,800	685,000	128.9	000	740.000	129.800
		JUST DOP	INSTREAM R	R BRIDO	E	
1	10.600	0.000	0.0	000	0.000	50,000
(3	10,000	0.000			0.000	0.000
68	0.000	1,500	2.5	0.0	0.000	7.500

Required Models

- Duplicate Effective Model
 - Effective models used HEC-2, WSP2, and hand calculations
- Corrected Effective Model
- Existing or Pre-Project Conditions Model
- Revised or Post-Project Conditions Model

Required Extent

- Extend until base flood elevations +/- 0.5 feet of the effective FEMA model
- Decrease in BFE required extending of West Channel
- Subset of overall hydraulic model



CLOMR – Purpose and Timing

Rational for Floodplain Management

- Protect lives and property

"Permitting and government approvals helped keep my project schedule" - Said no one.

8 month process after initial submittal

- Complicated case (as noted by CLOMR reviewer)
- Construction of hydraulic elements could begin following CLOMR release

Tigne&Bond

Construction Sequencing Plan

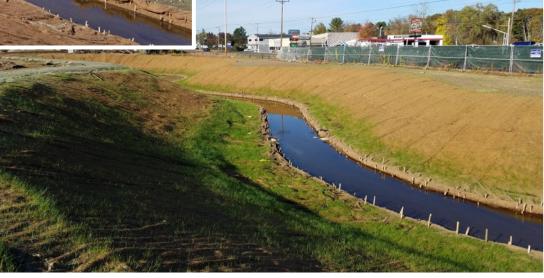
Box Culvert Installation

Tighe&Bond

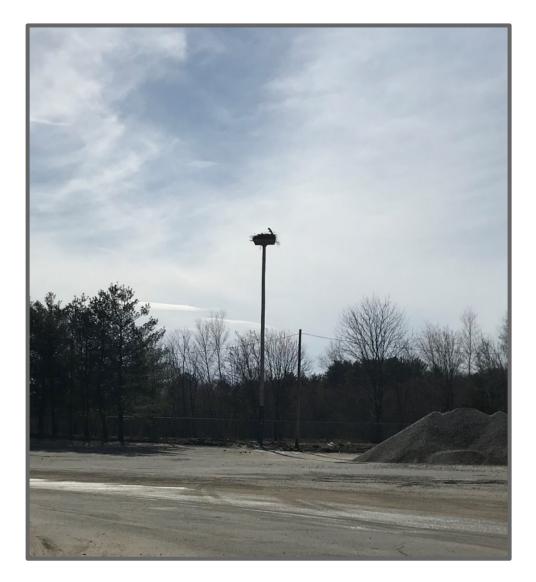
Pleasant Street Headwall

Box Culvert Installation

Temporary Bypass



Water Levels During Construction



Osprey

