

Comprehensive Environmental Incorporated

DESIGN AND CONSTRUCTION OF RESILIENT STORMWATER BMPS

ADDRESS CLIMATE CHANGE AND IMPROVE WATER QUALITY

A CASE STUDY – YARMOUTH MA

New England Water Environment Association (NEWEA) Conference – "Enhancing Stormwater Resilience in the Built Environment"

May 7, 2018

Presentation Overview

Climate Change

- Impacts
- What it means for stormwater

Yarmouth's Approach

- Climate change resiliency
- Water quality pollutant remediation
- Project Examples
 - Roadside design and construction
 - End-of-pipe design
- Upcoming Projects
 Localized groundwater flooding
- Lessons Learned

Climate Change Impacts

- Higher Temperatures
- Bigger Storms, More Often
 - More intense rainfall events
 - Stronger winds
 - More stream bank erosion

• Rising Sea Levels and GW

- Bigger storm surge
- More flooding
- More property inundation
- Salt water intrusion
- Vegetation Sensitivity
- More Stormwater!

CANTIO

Stormwater Climate Change Challenges

More Rainfall
 Higher peak flows and more volume

- Sea Level Rise
 - Less places to put stormwater
- Higher Groundwater
 - Less room for infiltration

Translation: More Stormwater

~4+ inches of rain in 2 hrs.
Occurred during high tide

Route 6 Wellfleet, July 7, 2017 – Boston Globe

July 7, 2017 – Cape Cod Times

Cape Cod

Very Susceptible to Climate Change

Very Sandy Soils

Isolated systems; leaching structures

NOAA

- <u>Good</u> infiltration & less runoff
- Poor N removal, flows subsurface
- Septic system contributions

Nitrogen Impacts

- Algae blooms (eutrophication)
- Low dissolved oxygen, fish kills

• Fecal Coliform (Bacteria)

• Sickness / illness, beach closures

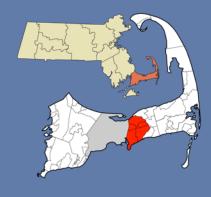
• Tourism! Can't Close Beaches

Yarmouth's TMDLs	<u>Fecal</u>	<u>Nitrogen</u>
Parkers River	Х	X (draft)
Bass River	Х	X (draft)
Hyannis Inner Harbor	Х	Х
Lewis Bay	Х	X
Mill Creek	Х	X
Chase Garden Creek	Х	

Background, Yarmouth Mass.

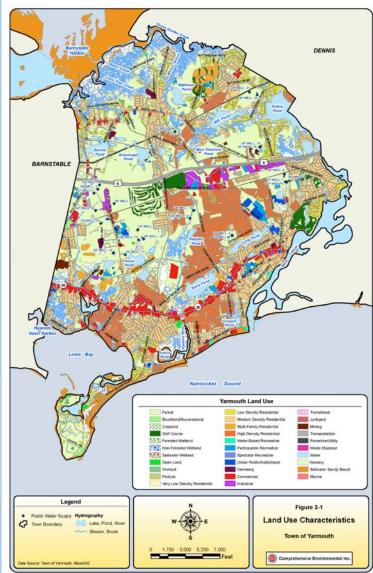
• Population: 23,793 people • Triples in summer months

• Land: (sq. mi): 25.3, 4.5 impervious 35%


20%

5%

- Forest:
- Residential: 33%
- Water:
- Comm/indust: 7%
- Other:


Infrastructure

- 162 known stormwater outfalls
- 100% onsite septic
- 1,000+ leaching structures!

ENTERING

YARMOUTH

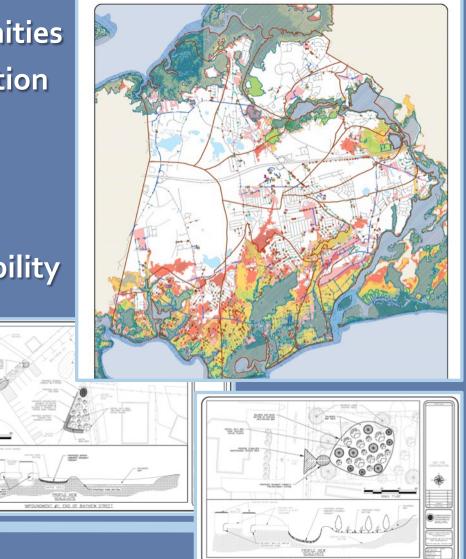
Yarmouth's Approach

<u>Overall Goal</u>: Improve Water Quality & Address Climate Change

• Where to Begin?

- Prioritize!
- 2 Grant Programs, Mass. Office of Coastal Zone Management (CZM)
 - 1. Climate Change Resiliency
 - 2. Coastal Pollutant Remediation

Multi-Year Approach



Climate Change Resiliency Grant

• Existing BMP Retrofit Opportunities

- Phase 1, Desktop GIS Prioritization
 - 1. Hurricane SLOSH zones
 - 2. AE 100-year flood zone
 - 3. VE velocity zone
 - 4. Sea level rise inundation
- <u>Phase 2</u>, Field Assess and Feasibility
- <u>Phase 3</u>, Conceptual BMPs
 - 1. End-of-pipe
 - 2. Roadside
 - 3. Leaching basin retrofit

<u>Goals</u>: Different BMP Designs for High Priority Sites

Coastal Pollutant Remediation Grant

•115 Outfall Catchments

- Phase 1, Desktop GIS Prioritization
 - 1. Nitrogen and bacteria concentrations
 - 2. Discharge location impaired waters
 - 3. Catchment size

• Phase 2, Field Assess and Feasibility

Subsurface

- 1.15 m

ADVICTOR FORT

- Phase 3, Conceptual BMPs
 - 1. End-of-pipe
 - 2. Subsurface
 - 3. Roadside

<u>Goals</u>: Different BMP Designs for Implementation at Multiple Sites

Comprehensive Environmental Incorporated

RECENT PROJECTS

New England Water Environment Association (NEWEA) Conference – "Enhancing Stormwater Resilience in the Built Environment"

May 7, 2018

Roadside BMP – Pawnee Road

Challenges

- Limited ROW
- Very flat area
- Shallow groundwater <1' deep

• Design Solutions:

- Subsurface gravel wetland functionality
- Surface bioretention

 aesthetics
- Minimize maintenance

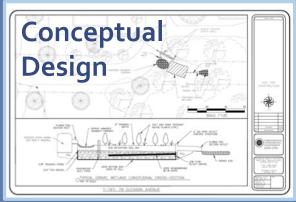
<u>Goals</u>: Treat Stormwater, Address Climate Change, Inexpensive, Easy to Build

FACHING BASIN

Roadside BMP – Pawnee Road

- Lined trench no groundwater intrusion
- Filters, not infiltrating better N removal

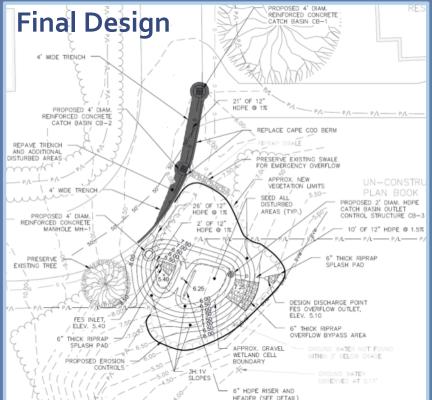
- Treatment largely below ground
- Can be constructed as part of roadway work


- Blends to existing grade
- Maintained by residents, not town
- Less resource burden

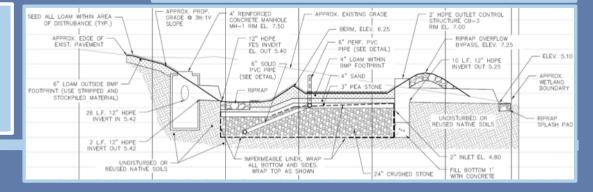
End-of-Pipe BMP – Gleason Avenue

Challenges

- Abuts wetland area permitting
- Moderately high groundwater
- Limited property availability "paper" road
- Large contributing catchment, ~4.4 acres



End-of-Pipe BMP – Gleason Avenue


Design Solutions

- Sediment forebay (pretreatment)
- Subsurface gravel wetland allows for rising groundwater
- Surface bioretention area provides for aesthetics
- Use of design, bypass, and emergency overflows controls larger storms
- Optional salt-tolerant plants

Construction – Fall 2018

<u>Goals</u>: Minimize Environmental Impacts, Treat Stormwater, Address Climate Change

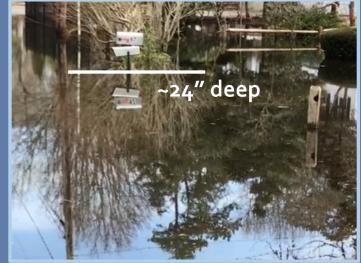
Comprehensive Environmental Incorporated

UPCOMING PROJECTS

LOCALIZED GROUNDWATER FLOODING

New England Water Environment Association (NEWEA) Conference – "Enhancing Stormwater Resilience in the Built Environment"

May 7, 2018


Mulford Street

Challenges

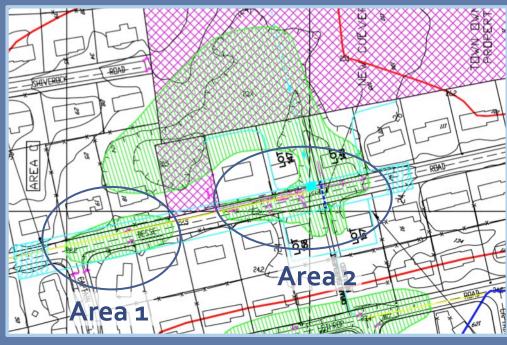
- Abuts an isolated wetland area
- Receives substantial offsite drainage
- Street floods 2+ feet deep!

Mulford Street

Appear to be Options Available

Needs Careful Design

- Create berm from isolated wetland area houses may still flood
- Lift road good, but need to match driveway grades
- Direct surface water to nearby low spot
- Loss of flood storage


• Don't push flood problems to somewhere else

Captain Besse Road

Challenges

- Very flat area
- Close to houses sump pumps
- Floods spots in the road
- High groundwater means can't infiltrate

Captain Besse Road

Ideas?

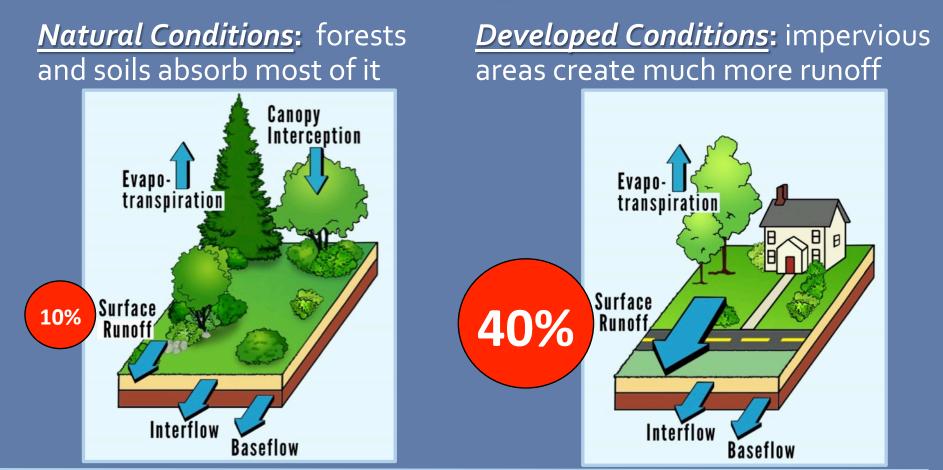
- Pump groundwater high aquifer transmissivity means endless water
- Lift road road may be okay, but houses?
- Direct surface water away to where?
- Buy house(s) and create basin \$\$\$
- Do nothing approach
 - may be viable here

This One's Tough!
 Maybe next year's conference

Observations and Lessons Learned

- Climate Change and Water Quality are Related
- Prioritization Makes Best Use of Resources
- Creative Design = More Options
 - Handling groundwater is critical
 - Evaluate permitting early, make sure you can construct
 - Think beyond infiltration and detention
 - Treating small storms is okay
- Doing Something is Better than Doing Nothing
 Be Proactive!

Comprehensive Environmental Incorporated


QUESTIONS?

New England Water Environment Association (NEWEA) Conference – Enhancing Stormwater Resilience in the Built Environment

May 7, 2018

What is Stormwater?

• In short, water that runs off during precipitation events

