

© New York Times

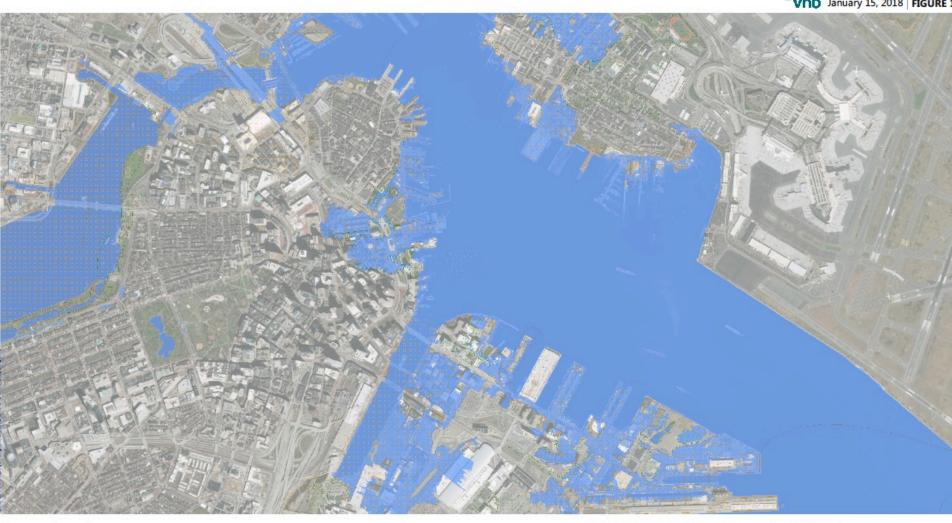
Designing for the Impact of Future Climate Conditions

Presented by: Mark Costa, PE

May 7, 2018

Today's Presentation

- Recent storm events
- Climate change design "regulations" & drivers for analysis
- Design Parameters
- Case Study
 - Coastal
 - Riverine
- Analyzing impacts on abutters


Winter Storm Grayson

- January 4, 2018 National Oceanic and Atmospheric Administration (NOAA) Boston Tidal Station recorded its highest reading ever of elevation 9.66-feet (NAVD 88).
- Previous high was elevation 9.61-feet (NAVD 88) Blizzard of 1978

Winter Storm Grayson

vhb January 15, 2018 FIGURE 1

VE: High Risk Coastal Area

X: 0.2% Annual Chance of Flooding

AE: 1% Annual Chance of Flooding, with BFE

Approx. Winter Storm Grayson Inundation Area

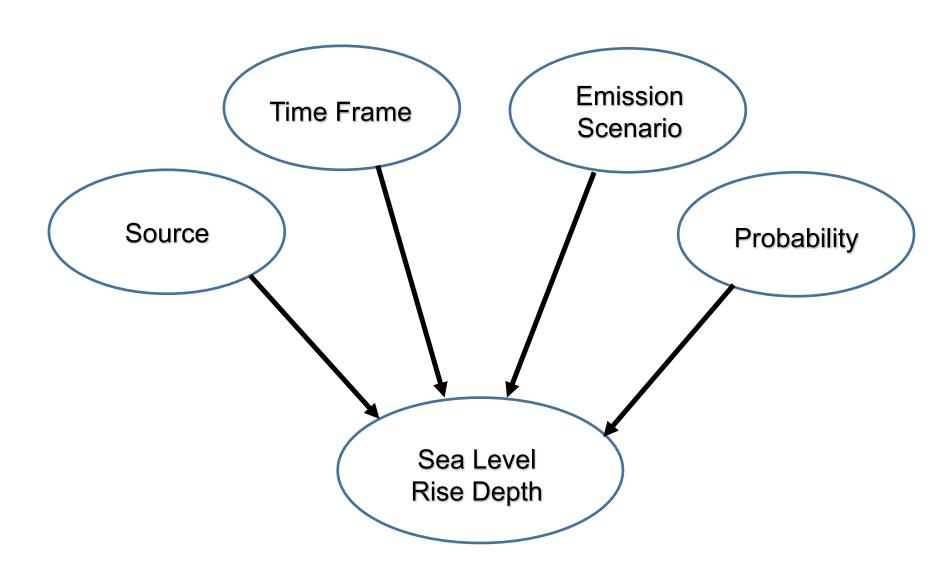
1. Flood inundation area mapped using peak water surface elevations reported at NOAA's Boston Tidal Gage and the USGS Charles River gage on January 4, 2018.

Coastal Flooding Inundation

Boston, MA

Source Info 1. NOAA

2. ESRI World Imagery

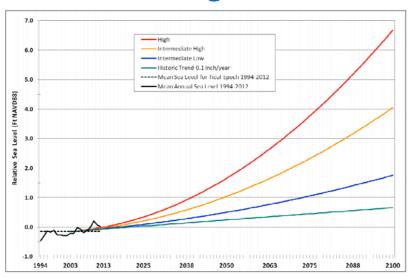
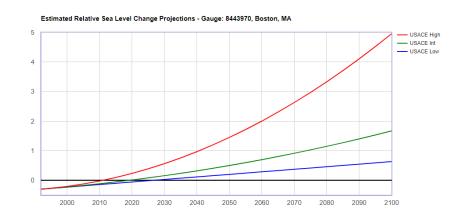

Climate Change Analysis Triggers (Massachusetts)

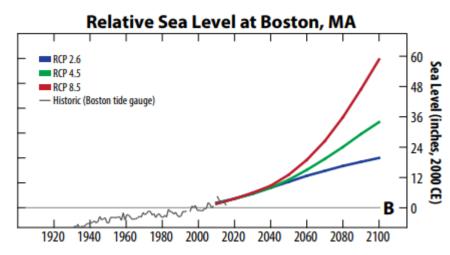
- Massachusetts Environmental Policy Act Office (MEPA)
- Federal Consistency Review with the Office of Coastal Zone Management
- Chapter 91 Waterways License
- Local Municipalities/Commissions/Boards (For example BPDA)
- Insurers
- Owners
- Massachusetts Executive Order 569
- Little to no performance standards

Boston Planning and Development Authority

Design Parameters – Sea Level Rise

Design Parameter - Source


Figure 5. Relative sea level rise scenarios estimates (in feet NAVD88) for Boston, MA. Global scenarios from were adjusted to account for local vertical land movement with 2003 as the beginning year of analysis.

Source: Sea Level Rise: Understanding and Applying Trends and Future Scenarios for Analysis and Planning (2013 CZM)

Source: United States Army Corps of Engineers

– Sea Level Chance Curve Calculator

Source: Boston Research Advisory Group (BRAG) Advisory Report (2016)

RSLC in feet (NAVD88)

Design Parameters – Emission Scenarios

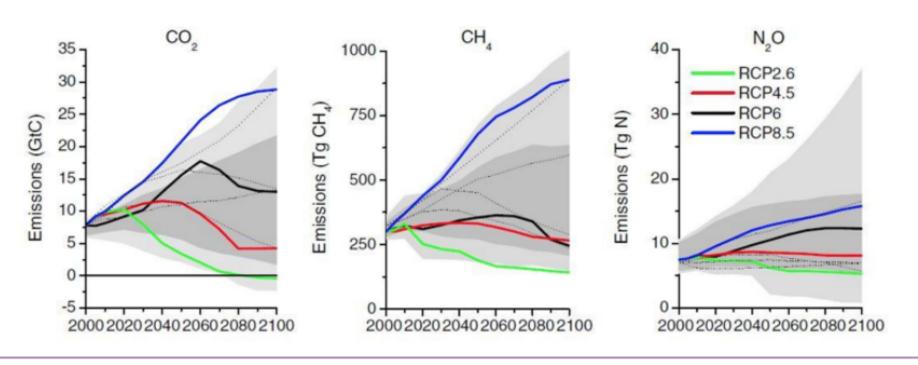


Figure i-2: Greenhouse gas emission trajectories used for RCP development (Source: van Vuuren et al., 2011).

Source: Boston Research Advisory Group (BRAG) Advisory Report (2016)

Design Parameters – Time Frame and Percent Probable

			LIKELY RANGE				MAXIMUM	
	0.99	0.95	0.833	0.5	0.167	0.05	0.01	0.001
RCP8.5								
2030	-0.1	0.1	0.3	0.5	0.7	0.9	1.0	1.2
2050	0.1	0.4	0.7	1.1	1.5	1.8	2.1	2.4
2070	0.6	1.0	1.5	2.2	3.1	3.7	4.3	4.8
2100	1.6	2.4	3.2	4.9	7.4	8.6	9.5	10.5
2200	18.9	19.9	21.4	26.1	32.8	34.1	35.3	36.9
RCP4.5								
2030	-0.1	0.1	0.3	0.5	0.7	0.9	1.0	1.2
2050	0.1	0.4	0.7	1.0	1.4	1.7	2.0	2.3
2070	0.4	0.9	1.3	1.9	2.6	3.1	3.6	4.1
2100	0.9	1.7	2.4	3.6	5.1	6.1	7.0	8.0
2200	5.5	6.2	7.2	10.9	16.5	18.0	19.3	20.9
RCP2.6								
2030	-0.1	0.1	0.3	0.5	0.7	0.9	1.0	1.2
2050	0.1	0.4	0.6	1.0	1.4	1.7	2.0	2.3
2070	0.3	0.7	1.1	1.7	2.3	2.7	3.1	3.6
2100	0.4	1.2	1.8	2.8	3.8	4.6	5.3	6.2
2200	3.6	4.4	5.2	6.4	7.7	8.8	9.9	11.8

Source: Boston Research Advisory Group (BRAG) Advisory Report (2016)

Total of 120 Sea Level Rise Projections

Coastal Considerations

Project

Forecasted 1% Annual Exceedance Event


1% Annual Exceedance Event

Forecasted MHHW& MHW??

Mean Higher High Water (MHHW) 4.77

Mean Higher High Water (MHW) 4.33

Design Parameters - Stormwater

Precipitation – Source, Time Frame, and Emissions Scenario

Table 3-1: Estimates of 10-yr, 24-hour design storms (inches) reported by BWSC and C-CCVA.

	Baseline	Precipitation Depths (in)		
Boston Water and Sewer Commission	(1948-2012)	2035	2060	2100
D2 (1:)	5.24		F 76	6.00
B2 (medium)	5.24	5.55	5.76	6.08
A1Fi (precautionary)	5.24	5.60	6.03	6.65
	Baseline	2030s	20	070s
Cambridge CCVA	(1971-2000)	(2015-2044)	(2055	-2084)
				_
Average values	4.9	5.6	6	.4

Table 3-2: Additional extreme precipitation metrics (inches) reported by C-CCVA.

	Baseline 2030s (2015-2044)		2070s (2055-2084)		
Cambridge CCVA	(1971-2000)	Lower	Higher	Lower	Higher
No. days per year > 2 in. rain in 24 hrs	2	3	3	3	3
Max. 5-day precipitation per year (in.)	6	6.5	6.6	7	7.2
24-hr design storms					
10yr	4.9	5.6		6.4	
25 yr	6.2	7.3		8.2	
100 yr	8.9	10.2		11.7	

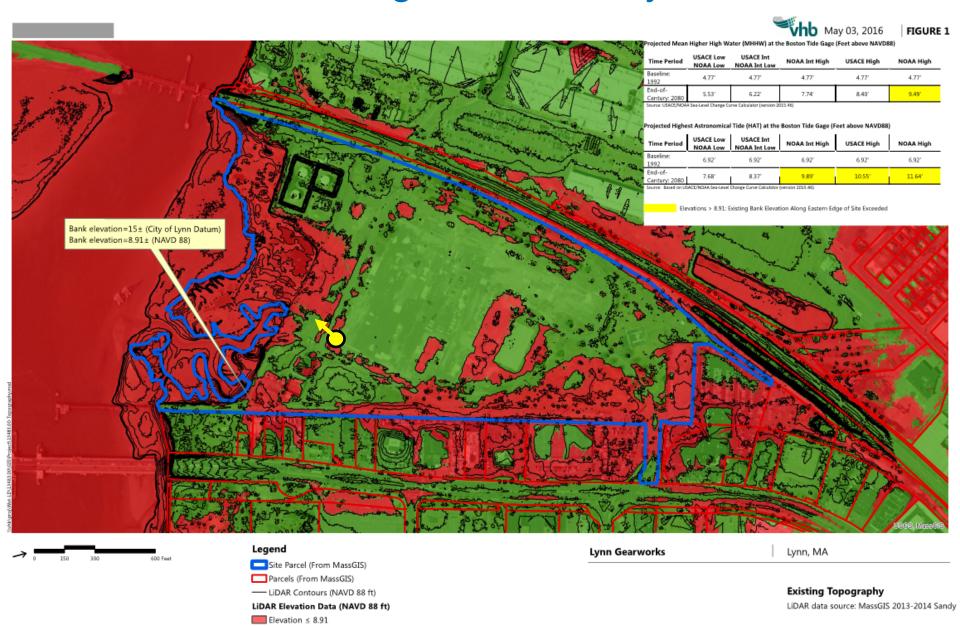
Design Parameter – Tailwater

Riverine

- Joint Probability
- Increase in Tailwater Flood Flow and Depth

Coastal

- Joint Probability BRAG Report Low Coincidence
- Increase in tailwater
- Localized flooding during joint event


Case Study – Lynn Gearworks

Coastal Flooding – Case Study

Elevation > 8.91

Coastal Flooding – Case Study

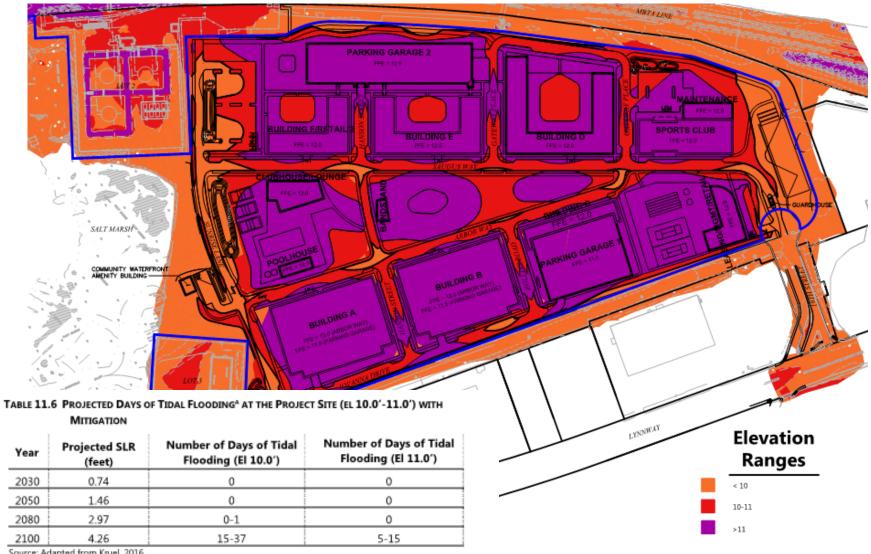
Coastal Flood – Case Study

TABLE 11.4 PROJECTED BASE FLOOD ELEVATIONS^a

	Current (2016)	Near-Term (2030)	Mid-Century (2050)	Late-Century (2080)	End-of- Century (2100)
USACE High ^b	10′	11'	12′	14'	15′
NOAA High ^b	10'	11'	12'	15'	17′
NOAA Int Highb	10′	11′	11′	13'	14'
COB Low ^c	10'	11'	11'		14'
COB Medium ^c	10'	11'	12′		15'
COB High ^c	10'	11'	12'		18'
BH-FRM High ^d	10′	12'		14' (2070)	

a Feet above NAVD88

Sources: b USACE/NOAA Sea-Level Change Curve Calculator (version 2015.46); c City of Boston, 2016; d Bosma, 2016.


TABLE 11.5 PROJECTED DAYS OF TIDAL FLOODING* AT THE PROJECT SITE (APPROX. EL 8.5' – 10.0') WITHOUT MITIGATION

Year	Projected SLR (feet)	Da	Days of Tidal Flooding (El 8.5')		Days of Tidal Flooding (El 10.0')	
2030	0.74	0			0	
2050	1.46	0-1			0	
2080	2.97	15-37			0-1	
2100	4.26		238-294		15-37	

Source: Adapted from Kruel, 2016.

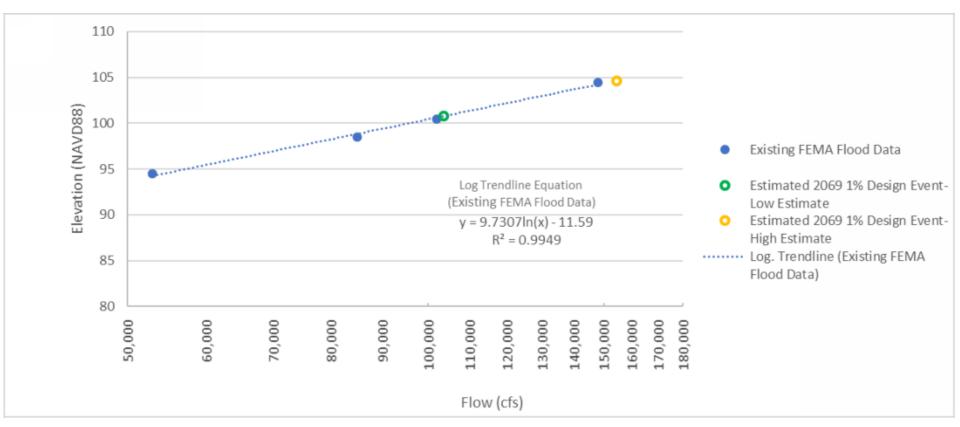
³ NOAA Intermediate High Scenario

Lynn Gearworks

Source: Adapted from Kruel, 2016.

^o NOAA Intermediate High Scenario

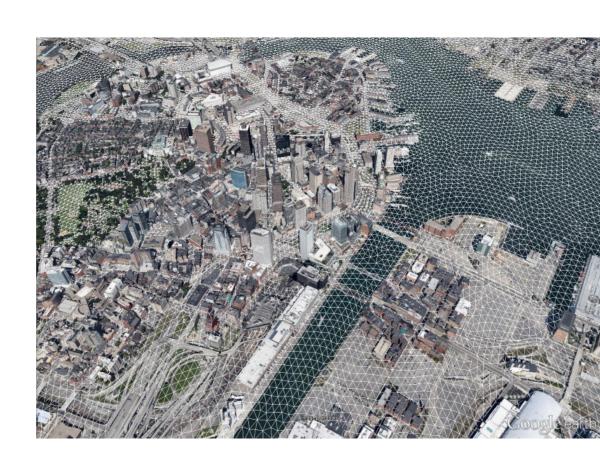
- Proposed Supermarket Project
- Abutting the Merrimack River in Lowell, MA
- MEPA ENF Certificate "provide an analysis and discussion of vulnerabilities of the site to the potential effects associated with climate change."


 The Boston Research Area Group (BRAG) report provides projections for Riverine Flooding for 100-year event.

- Project lifespan = 50 years (Year 2069) Low = 2%+ High = 51%+

Flood Type	2055	2085	
Small floods (e.g., 2-year recurrence interval)	0 to 20%	20% to 50%	
Design floods (e.g., 100-year)	-10% to 35%	15% to 70%	
Flood frequency (floods/year)	increases	increases	

Hydraulic model (HEC-RAS) to determine flood elevations for rivers.


Merrimack River at Nashua, New		
Hampshire (State Route 111)	Flowofs)	Elevation (ft)
10-Percent	85,000	94.5
2-Percent	102,000	98.5
1-Percent	148,000	100.5
0.2-Percent	,	104.5

- Plotted existing FEMA data: Flow vs. Elevation
- Created a logarithmic best fit trendline.
- Trendline used to a provide approximate planning level method to determine 100-year flood elevation.

Impacts on Abutters

- Projects are being asked to determine impacts on abutters
- Boston Harbor Flood Risk Model
 - Currently being expanded to entire Massachusetts Coastline
 - Only existing conditions
- Access Wave Impacts
 - Create Coastal Transect
 Model using FEMA
 guidelines to model
 Storm Surge and Waves
 - Re-create FEMA FIRM Maps

Stay Connected

- Facebook
 www.facebook.com/VHBNow
- Twitter www.twitter.com/VHBnow
- LinkedIn www.linkedin.com/company/vhb
- Instagram
 www.instagram.com/vhbnow

