Use of Best Management Practices in the Marketing and Management of a Biosolids Derived Biofertilizer Product

PRESENTED BY:

Sam Halloran Project Coordinator Lystek International Inc.

Presentation Overview

- Company, Process and Product Overview
- Lystek's Best Management Practices
- Product Marketing Strategies
- P regulations

Lystek - The Company

- Biosolids and organics management and processing company
- Developed at University of Waterloo in year 2000
- Thermal alkali hydrolysis process producing a Class A EQ product

- Hydrolysis (Temperature, pH adjustment, shearing)
 - Heat (to 170°F)
 - Alkali Addition increase pH to 9.5

- Lime, KOH, etc.

High speed shearing (Lysing)

LysteGro^{™,} LysteMize[™] & LysteCarb[™] Fertilizer and Plant Optimization

Current Lystek Installations

Location	Status	Capacity (WT/Y)	Location	LysteGro Class A EQ/ CFIA	LysteMize Digester Enhancement	LysteCarb BNR Carbon Source
Guelph	2008	18,000	On Site	Yes	Full Scale Pilot	No
St. Mary's	2010	3,500	On Site	Yes	Full Scale	Yes
*Southgate	2012	150,000	Off Site	Yes	No	No
*Iroquois	2012	40,000	Off Site	Yes	No	No
Elora	2014	3,500	On Site	Yes	Aerobic	No
North Battleford	2014	3,500	On Site	Yes	Aerobic	No
*Fairfield, CA	2016	150,000	On Site	Yes	Full Scale	Possibly
St. Thomas	2018	5,600	On Site	Yes	No	No
Innisfil	2018	5,500	On Site	Yes	Aerobic	No
St. Cloud, MN	2018	15,000	On site	Yes	Anaerobic	Possibly

Regional facilities serving several cities

- Ontario Toronto, Ottawa, Waterloo, Niagara, Peterborough; Owen Sound
- California Fairfield, San Francisco, EBMUD, Santa Rosa, Central Marin, Petaluma

Canadian Customers Centre Peterborough Wellington innservices THE CORPORATION OF THE CITY O Guer ST. THOMAS **Foronto** owe Aidland **Making a Differen** 14 where you want to live Niagara ST. AMARYS Region North Battleford ' Canada Ontario TAY TOWNSHIP **M**Halton Third High Farms Region of Waterloo

Nothing wasted.

Everything to gain.

United States Customers

EAST BAY

MUNICIPAL UTILITY DISTRICT

Services of the San Francisco Public Utilities Commission

On-site Processing

- Elora
- Guelph
- St. Marys
- North Battleford
- St. Thomas*
- Innisfil*
- St. Cloud, MN*

Regional Processing Facilities

- Southgate, ON
- Iroquois, ON
- Fairfield, CA

LysteGro[™] Product

- Homogeneous liquid/ high solid (~15%) product
- Viscosity <5,000 cP
 - Fully pumpable using conventional liquid equipment
 - Canadian Food Inspection Agency registered fertilizer
- Class A EQ Biosolids in US
- Long-term storage stability – no settling

US EPA Region 9 Review: Lauren Fondahl

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION IX 75 Hawthorne Street San Francisco, CA 94105

February 27, 2014

Ward Janssens

Lystek international inc. 1425 Bishop St. N. Unit 16 Cambridge, Ontario, N1R 6J9

Re: Demonstration of Vector Attraction Reduction using Option 2 for Lystek Thermo-Alkaline Treatment

Dear Mr. Janssens,

Thank you for your e-mail and attached paper from Dr. George Nalkla of Pebruary 1, 2014 with results of volatile solide reduction tests on anarchically digested biosolids treated with the Lyster Thermo-Alkalia retartment process.

The results showed that for the sampling periods in question, VAR Option 2 was met, as the volatile solids were reduced by less than 17% during additional digestion. This option may be used in the future to domonstrate vector attraction reduction.

The frequency at which the test must be run is specified in 40 CFR 503.16, ranging from once per year for facilities producing less than 290 dry metric lons of biosolids per year, to once per month for facilities producing over 15,000 dry metric tons per year.

Demonstration of VAR using this method, in conjunction with demonstration of Class A pulbogen reduction and pollutant concentrations meeting 40 CPR 503.13 Tables 1 and 3 limits, demonstrates "exceptional quality" biosolids that may be distributed without further restrictions.

Please contact me at 415 972-3514 or Fondahl lauren@ena.gov with any questions regarding this.

Thank you, daum

Lauren Fondahl Biosolids Coordinator, WTR-5

US EPA Region 9 Review: Lauren Fondahl

"The use of biosolids provides a valuable renewable source of nutrients and soil structure enhancement for the agricultural industry. Treatment of biosolids into a liquid fertilizer, with subsurface application at computer system-controlled loading rates, allows for an additional level of management of nutrient loadings and for ensuring compliance with US EPA regulations. We support innovative technologies such as this which provide benefits to generators and enhance the quality of the product for end-users."

-Lauren Fondahl, Biosolids Coordinator, USEPA, Region 9 San Francisco, California

Biosolids - Pathogens

Pathogens	MDL	Class A Criteria	Untreated dewatered biosolids	Lystek treated biosolids
Fecal coliforms (MPN/g dry wt)	1.8	< 1,000	> 1,600	< 1.8
<i>Escherichia coli</i> (MPN/g dry wt)	1.8	-	> 1,600	< 1.8
Salmonella (P-A / 25 g)	1	< 3 MPN/4g	POS	NEG
Polio virus (pfu / 4g)*	1	< 1	776	< 1
<i>Ascaris</i> eggs (per 4g)*	1	< 1	131	< 1

Lystek Southgate Organic Materials Recovery Centre (OMRC) 191 Eco Park Way, Dundalk, Ontario NOC 180

LysteGro	Fertilizer Con	position	
	LysteGro Average ^a	Maximum Allowable Concentration ^b	Units
Organic Matter Content	9.28		% on a wet weight basis
Total Organic Carbon	5.40		% on a wet weight basis
Total Nutrient Content			
Total Nitrogen (TKN)	4.90	-	% on a dry weight basis
Total Available Nitrogen (Ammonium + Nitrate)	1.28		% on a dry weight basis
Total Organic Nitrogen	3.62		% on a dry weight basis
Total Phosphorus (elemental)	2.73		% on a dry weight basis
Total Phosphorus (P ₂ O ₅)	6.25		% on a dry weight basis
Total Potassium (elemental)	1.54		% on a dry weight basis
Total Potassium (K ₂ O)	1.85		% on a dry weight basis
Metals Regulated by MOE	- <u>-</u>		
Arsenic	2.64	170	mg/kg
Cadmium	2.03	34	mg/kg
Cobalt	3.22	340	mg/kg
Chromium	69.21	2800	mg/kg
Copper	547.07	1700	mg/kg
Mercury	0.58	11	mg/kg
Molybdenum	8.93	94	mg/kg
Nickel	21.32	420	mg/kg
Lead	33.57	1100	mg/kg
Selenium	3.39	34	mg/kg
Zinc	657.49	4200	mg/kg
Other Relevant Macro and Micronutrients			
Boron	0.034		lbs/1,000 gallons
Calcium	66.84		lbs/1,000 gallons
Copper	0.82		lbs/1,000 gallons
Iron	115.83		lbs/1,000 gallons
Magnesium	7.60		lbs/1,000 gallons
Manganese	0.52		lbs/1,000 gallons
Selenium	0.0051		lbs/1,000 gallons
Sulphur	18.40		lbs/1,000 gallons
Zinc	0.98		lbs/1,000 gallons
Total and Available Nutrients (during 1st growing sea	ason) - Imperial	T T	lbs/2.000 sellers
Total Nitrogen	73.15	+	Ibs/1,000 gallons
Total Available Nitrogen	40.75	+ +	lbs/1,000 gallons
Total Phosphorus (P ₂ O ₅)	93.37		lbs/1,000 gallons
Total Available Phosphorus (P ₂ O ₅) ^c	37.35		lbs/1,000 gallons
Total Potassium (K ₂ O)	27.64		lbs/1,000 gallons
Total Available Potassium (K ₂ O) ^d	24.88		lbs/1,000 gallons
Pathogens			
Fecal coliform	<1.8		MPN/g(mL)
Salmonella spp.	Absent		P-A/25g(mL)

LysteGro Fertilizer Composition

^a Values represent the mean of 52 samples collected on a weekly basis from January 1 - December 30, 2016

^b As per Ontario Regulation 338/09 Schedule 5

^c The sum of Ammonium + Nitrate + assume 40% mineralization of Organic Nitrogen during first growing season

^d Assume 40 % availability of Phosphorus during first growing season

^e Assume 90% availability of Potassium during first growing season

^f Results were consistent for all sampling events

Lystek Southgate Organic Materials Recovery Centre (OMRC) 191 Eco Park Way, Dundalk, Ontario NOC 1B0

LysteGro Fertilizer Composition

	LysteGro Average ^ª	Maximum Allowable Concentration ^b	Units
Organic Matter Content	9.28		% on a wet weight basis
Total Organic Carbon	5.40		% on a wet weight basis
Total Nutrient Content			
Total Nitrogen (TKN)	4.90		% on a dry weight basis
Total Available Nitrogen (Ammonium + Nitrate)	1.28		% on a dry weight basis
Total Organic Nitrogen	3.62		% on a dry weight basis
Total Phosphorus (elemental)	2.73		% on a dry weight basis
Total Phosphorus (P ₂ O ₅)	6.25		% on a dry weight basis
Total Potassium (elemental)	1.54	9 A	% on a dry weight basis
Total Potassium (K ₂ O)	1.85		% on a dry weight basis
Metals Regulated by MOE			
Arsenic	2.64	170	mg/kg
Cadmium	2.03	34	mg/kg
Cobalt	3.22	340	mg/kg
Chromium	69.21	2800	mg/kg
Copper	547.07	1700	mg/kg
Mercury	0.58	11	mg/kg
Molybdenum	8.93	94	mg/kg
Nickel	21.32	420	mg/kg
Lead	33.57	1100	mg/kg
Selenium	3.39	34	mg/kg
Zinc	657.49	4200	mg/kg

Other Relevant Macro and Micronutrients		
Boron	0.034	lbs/1,000 gallons
Calcium	66.84	lbs/1,000 gallons
Copper	0.82	lbs/1,000 gallons
Iron	115.83	lbs/1,000 gallons
Magnesium	7.60	lbs/1,000 gallons
Manganese	0.52	lbs/1,000 gallons
Selenium	0.0051	lbs/1,000 gallons
Sulphur	18.40	lbs/1,000 gallons
Zinc	0.98	lbs/1,000 gallons
Total and Available Nutrients (during 1st growi	ng season) - Imperial	
Total Nitrogen	73.15	lbs/1,000 gallons
Total Available Nitrogen ^b	40.75	lbs/1,000 gallons
Total Phosphorus (P ₂ O ₅)	93.37	lbs/1,000 gallons
Total Available Phosphorus (P ₂ O ₅) ^c	37.35	lbs/1,000 gallons
Total Potassium (K ₂ O)	27.64	lbs/1,000 gallons
Total Available Potassium (K ₂ O) ^d	24.88	lbs/1,000 gallons
Pathogens		-
Fecal coliform	<1.8 ^f	MPN/g(mL)
Salmonella spp.	Absent ^f	P-A/25g(mL)

^a Values represent the mean of 52 samples collected on a weekly basis from January 1 - December 30, 2016

^b As per Ontario Regulation 338/09 Schedule 5

^c The sum of Ammonium + Nitrate + assume 40% mineralization of Organic Nitrogen during first growing season

^d Assume 40 % availability of Phosphorus during first growing season

^e Assume 90% availability of Potassium during first growing season

^f Results were consistent for all sampling events

Focus on the Benefits and Reasons for Beneficial Use

- Integrate biosolids into the Circular Economy
 - Resources are used and by-products are managed to reduce waste and re-purpose the materials
 - Metal, paper, plastics
 - Organics are separated for digestion/composting
 - Biosolids are beneficially utilized as a fertilizer and organic amendment
 - Focus on the value while also ensuring compliance
 - Understand that proper management is necessary and possible

Focus on the Benefits and Reasons for Beneficial Use

- Nutrients macro and micro
 - Often better source of nutrients than manure
- Resource Recovery
 - P not a renewable resource limited global resources
 - N Haber-Bosch process energy intensive

Focus on the Benefits and Reasons for Beneficial Use

- Carbon Sequestration
 - Excellent source of Organic Carbon
 - Improve vegetative growth above and below ground
- Soil Health
 - Improve Soil Microbial Activity
 - Improve Soil Water Holding Capacity
 - Improve Aggregate Stability
 - Improve resilience to extreme weather

Arrows delineate tree growth to that year-end. Biosolids applications August 1992, 20 dt/ha supplying 800 Kg TKN /ha.

The Challenge

How to change perspectives on something that has traditionally been considered a "waste"

- Focus on positive messaging
- Provide a PRODUCT and SERVICE
- Prove it works Third Party, Independent Studies
 - Ensure the work is done well

Best Management Practices

LysteGro – Application and Setback Guidelines.

Application Method

LysteGro must be injected

Application – Ground Condition

LysteGro cannot be applied to Frozen or Snow-covered soil (as defined by the Nutrient Management Act).

Depth to Groundwater

There must be at least 30 cm of unsaturated soil at the surface of the land at the time of application.

Depth to Bedrock

There must be at least 50 cm separation distance from ground surface to bedrock.

Set-backs

Setbacks for application of nutrients to agricultural land in Ontario are regulated based on the following criteria:

- 100 m from municipal wells for all applied nutrients
 - o (O. Reg. 338/09, s. 43)
 - o 30 m from any other well (O. Reg. 338/09, s. 43)
- No application is permitted within 25 m of a dwelling. (O. Reg. 338/09, s. 43.)
- No application is permitted within 50 m of a residential area or

Best Management Practices

- Apply based on Agronomics rather than maximum loading rates
- Soil tests, future cropping plans and farmer requirements determine rate
- Require payment
 - When they pay for it, they only use as much as they need

Utilize Agricultural Technology

- Focus on producing a quality product and providing a quality service to the customer
- GPS
- Flow meters

Third Party Trials

2015 - 2017

- Georgian Central Soil and Crop Improvement Assocation + OMAFRA
 - 13 sites (farms)
 - 3 treatments, replicated 3 times at each site
 - 2 rates of LysteGro, 1 rate of comm. Fert.
 - 1 site comparing manure vs. LysteGro
 - 1 site comparing Anaerobic Digestate vs. LysteGro

Lystek Yield Data 4,500 and 3,000 gal/ac vs Fertilizer

Meeting Corn Nutrient Needs with LysteGro[™] Fertilizer

2015 Georgian Central Soil & Crop Improvement Association Project

In 2015, Lystek International Inc. participated in a trial with the Georgian Central Soil and Crop Improvement Association (GCSCIA) to evaluate the effectiveness of LysteGro, a registered fortilizer with the Canadian Food

WHAT IS LYSTEGRO?

Lystek utilizes its innovative technology to process biosolids and other organics to produce a high quality, pathogen free, nutrient rich, fertilizer product called LysteGro. The product is registered at the federal level (CFIA) in Canada and is also recognized as a Class A (EQ) biofertilizer by the US EPA. It is currently utilized by farmers throughout Ontario as a commercial fertilizer replacement and/or curplement

Sold Out!!

- Demand far outweighs supply
- Significant price increases year over year
- Customer lists growing throughout Ontario and California

Fertilizer Sales

- 2014: **\$300,005**
- 2015: **\$521,721**
- 2016: **\$775,000**
- 2017: ~\$1,000,000

\$\$ Savings

- Within 50 miles of facility- local market
- One pass of the field
- Reduced labour in field
- Fast, efficient truck loading at the plant
- Drag line system

Alternative Products

- Products for golf and turf
 UofG
- Products to the horticultural and container industries
 - Ontario, BC and
 California studies in 2017

1

Phosphorus Management Tools, and.....Regulation

- Working within P regulations (e.g. Maryland)
 - Utilize the product as efficiently as possible
 - Injection (lower rate) and other BMP's
 - Apply based on agronomics- not maximum loading rates
 - Flow meters/GPS that regulate flow
 - Consider Source Coefficient- Water Extractable P
 - Can increase N:P ratio through addition of synthetic N
 - Produce a more marketable material that will provide both P and N requirements of crop

Phosphorus Regulation

- Consequences for LysteGro application:
 - PMTs consider:
 - FIV, exchangeable Fe & Al
 - buffers, slope, tillage, rotation, etc
 - Maryland: Some locations (depending mainly on soil type and FIV) will have a PMT score between 0 – 50, which would allow for 3-year crop removal application rate
 - Is this possible?
 - » For some crops (corn, corn silage and alfalfa)
 - ~ Based on application rates of 2,000 2,500 US Gallons/ac OR 8 – 10 tons/ac

Thank You!

stek

Nothing wasted. Everything to gain.

t: 226-444-0186 e: info@lystek.com w: <u>www.lystek.com</u>

