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Mission

* Qur project’s purpose:

Reduce Total Nitrogen (TN) in effluent of NYC WWTPs

Carbon in primary effluent (PE) insufficient for denitrification
Use supplement carbon addition (glycerol) to fuel denitrification
Accurately (cost effectively) dose glycerol

* Flexible system design features
* Impressive full scale results
» Additional applications
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Introduction: Upper East River and Jamaica Bay WWTPs
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e Upper East River aggregate limit permit
e Glycerol Addition: Wards Island, Tallman
Island, Bowery Bay

m Environmental
Protection

e Jamaica Bay aggregate limit permit
* Glycerol Addition: Jamaica and 26 Ward



Introduction: Total Nitrogen (TN) Reduction Targets
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Introduction: BNR in NYC — Typical Plant
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Introduction: Approach to BNR in NYC

° S tep Fee d BNR Zones Anoxic Aerobic Pre-Anoxic
Carbon )
—_—
* Phase | BNR Upgrades: RAS meegE "
o Aeration Tanks (e.g., baffling) s
o Aeration Systems e e PE
o RAS/WAS System
) Carbon mes)
o Froth Control (Surface Foaming) =~ Pe=== -
o Chemicals LSS el
.. PE
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v’ Sodium hypochlorite
o Separate Centrate Treatment
v’ Dedicated Aeration Tank for high strength waste

* Phase Il BNR: Supplemental Carbon Addition



Objectives for Carbon Addition

* TN discharge requirements

e Safety

* Accurately dose (avoid overdosing glycerol)
* Minimizing operational costs

* Simple/flexible to operate

* Consistent between plants

* Operational contingency plans



Challenges: Complexity of Step Feed

* Nitrification- RAS
Denitrification cycling
* Step feed of PE: EE{UZIK
* Introduces C+ N Primary Effluent
at beginning of == Supplemental
Carbon
each Pass Primary Effluent
* Sequenha”y Supplemental el
shortening Carbon
hydraulic Effluent to FST Primary Effluent
retention times = Spplemental
(td) Carbon
* pass SpECiﬁC solids Aerobic Anoxic/Switch De-Ox
inventory (MLSS) —  Baffle Wal



Challenges: C:N Variability
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Supplemental Carbon (Glycerol) System
Overview:

I Return Loop To BNR or SCT Basins

v Vv
o
R
Storage
Supplemental Carbon = L
Glycerol:
e 70% strength (neat) i I
« 1,000,000 mg COD/L / T
« S2/gallon +/- (assumed for — i '
budget purposes) Fill Mixing/Transfer Glycerol Feed
* Non-hazardous (EPA: GRAS) Pump Pumps

Carbon Supply
Control Station
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Glycerol System Overview

e Tandem Flow Control Valve &
Flow Meter (in series)

* Flow meter: Measures dosed
flow

e Controller:

* Compares set point to
actual dose

* PID tuning parameters
generate valve position
correction

e Control valve modulates to
maintain set point
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Glycerol System Overview: Instrumentation

* Nitrate probes
located

 End of Pass B
(feed forward)

* End of Pass C
(feed forward)

* End of anoxic
zone in Pass D
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Control Strategies: Glycerol Dosing Strategies

Manual Operator sets valve position Constant
Semi-Auto Operator Enters Glycerol Flow Rates Constant
Historical Diurnal Lookup Tables (Operator adjustable) Variable
Flow Paced PLC factors plant flow x ratio factor Variable

Nitrate Analyzer Cascade Control: PLC process calculation based on:

] . Variable
Control plant flow, nitrate signals and process parameters

Environmental
m Protection 14



Control Strategies: Manual & Semi-Auto

Pros Cons

Simple Overdoses part of the day

Constant Flow Overdose = Overspend
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Control Strategies: Historical Data Mode

Follows diurnal hourly lookup table Not based on real time signal(s)

Does not account for centrate variable

Operator adjustable ol

Not reliant on plant flow signal Does not account for process upsets

Not reliant on probes

Environmental
NVYGC: 16



Control Strategies: Automatic “Flow Paced”

Dosing is proportional to plant flow
signal

Does not account for actual C& N

Does not account for centrate variable
loading

Does not account for process upsets

Does not account for diurnal C:N

Must shut off during rain events (else
over dose)

Environmental
NVYGC: 17



Control Strategies: Nitrate Analyzer Control

Probes maintenance (biweekly
cleaning/calibration)

Accounts for Plant Flow

Accounts for Process Parameters Seles o heving [l Now st
(Operator Adjustable)

Process parameters need to be
updated with operational changes

(e.g., seasonally)

Accounts for Kinetics and
Stoichiometry

Process calculations determine each
glycerol dose set point

Kinetic limitations prevent over dose

Environmental
m Protection 18



Control Strategy Comparison (at 26" Ward)

Glycerol Hourly Settings (Winter)
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Control Strategies:
Contingency, Contingency, Contingency
* What if probes fail? >

e Historical
* Flow pace

 What if plant flow signal lost?
* Semi-Auto
e Historical

e What if PLC fails?

e Semi-Auto (Local control loop)

* What if local control loop fails? ™4
* Manually position valves

* VVarious control strategies = operational flexibility

/

b \s
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Full Scale Testing and Operation:
Optimization Sampling

* 6 month sampling program

14
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Full Scale Testing and Operation at 26t Ward

* Side by side
performance
comparison:

* AT 1 — Nitrate
mode

* AT 2 —Semi- ) 7
Auto mode Jﬁ ﬁ/
(optimized) ’
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Testing Setup and data
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Results
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Results

Glycerol Hourly Settings (Winter)
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Estimated Annual Glycerol Usage and Cost by
Strategy (Assuming ~5$2.00/gal) at 26t Ward

Strategy Annual G(lgy:l(;rol Usage Annual Glycerol Cost ($)

Semi-Auto Constant Dose

i) 988,000 $1,976,000
Semi-Auto anstant Dose 673,000 §1.346.000
(Optimized)
Nitrate Control 319,000 $639.000
Potential Savings 354,000+ $707,000+

Environmen tal
NVYGC: 2%



Take-aways & Next Steps

* Various control strategies = operational flexibility

* Control strategies + optimization sampling = process efficiency =2
cost savings

* Advanced control strategy + optimization:
e Demonstrated effectiveness for carbon addition
e Also useful for other chemical addition with measurable feedback

* Next Steps for NYC:

« 26" Ward implementing full plant nitrate control strategy

« 26" Ward tune historical control strategy based on nitrate control strategy
 Similar for remaining four plants
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Questions?

Email: Mark.supplee@ch2m.com and rfrost@hazenandsawyer.com
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