Testing Add-On Phosphorus Removal Processes at Upper Blackstone to Balance Low-Level Phosphorus *and* Metals Permit Limits

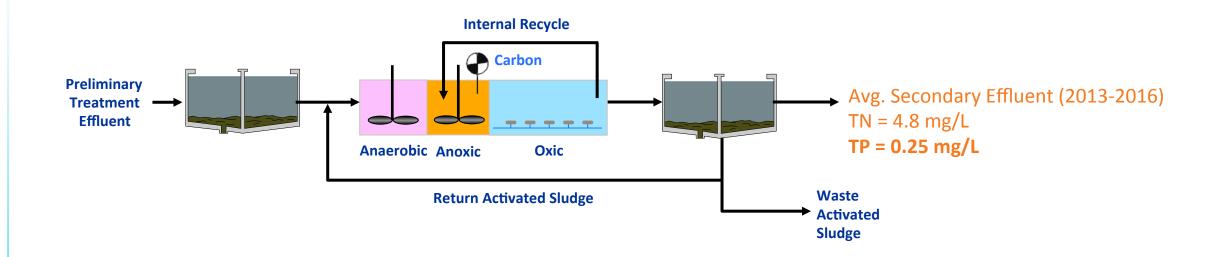
Alexandra Bowen, P.E. Maureen Neville, P.E. Karla Sangrey, P.E. Erik Grotton, P.E.

January 23, 2018

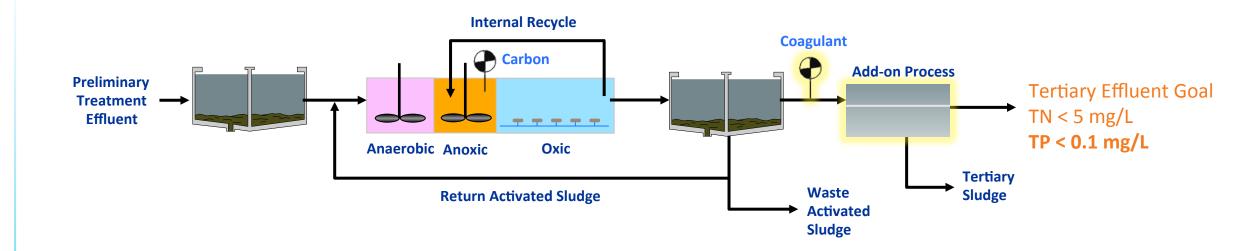
NEWEA – 2018 Annual Conference & Exhibit

Upper Blackstone Wastewater Treatment Facility

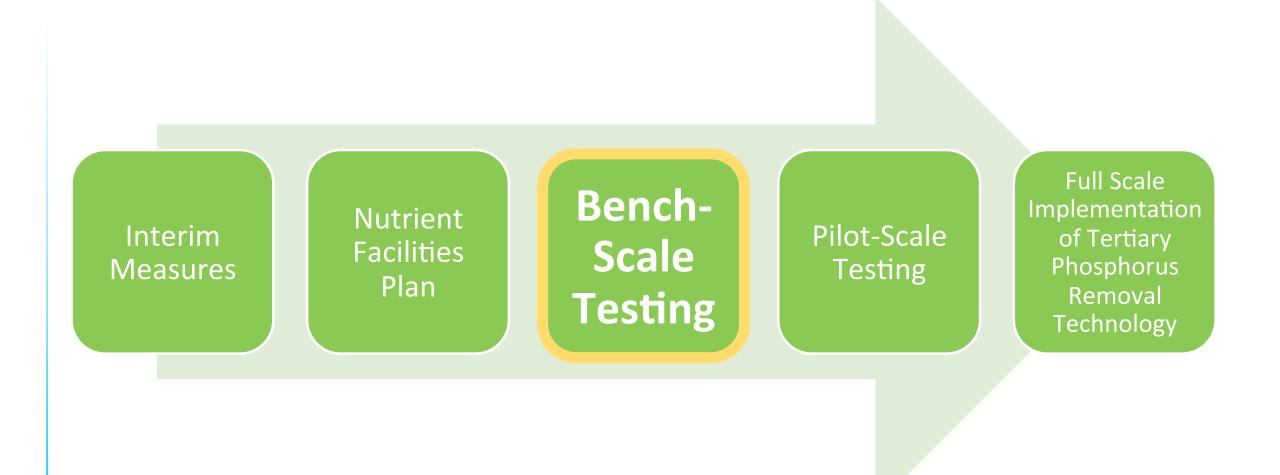
- Serves 250,000 people in central Massachusetts, including the City of Worcester
- Discharges into the Blackstone River which ultimately flows to the Narragansett Bay
- Designed for 45 mgd ADF and 160 mgd peak hour; 30 mgd current ADF
- Regional biosolids facility


Upper Blackstone's NPDES Permit Limits

Constituent	2012 Permit
Total Nitrogen (mg/L) – Monthly average	5.0
Total Phosphorus (mg/L) –60-day rolling ave	rage
April-October	0.10
November-March	1.0
Aluminum (μg/L)	87
Cadmium (µg/L)	
Average Monthly	0.2
Maximum Day	1.5
Copper (µg/L)	
Average Monthly	7.2
Max Day	10.2
Zinc (μg/L)	91.3
Lead and Nickel (µg/L)	Report


3

Current Anaerobic/Anoxic/Oxic (A²/O) Process Configuration:



Proposed Process Configuration to Achieve TP Compliance:

Which coagulant? Which add-on process?

Steps Toward Achieving 2012 TP Permit Limit

Coagulants Bench-Tested:

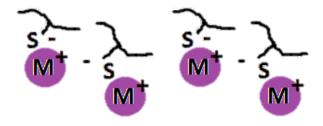
Aluminum-Based

Iron-Based

Earth

Rare

Alum (Aluminum Sulfate) A|³⁺ ≈4.4% Al PACI (Polyaluminum Chloride) A|³⁺ ≈5.6% Al ACH (Aluminum Chloride Hydrate) A|⁷⁺ ≈12.4% Al Ferric Chloride Ee³⁺


≈13.5% Fe

Ferric Sulfate Fe³⁺ ≈13.1% Fe

RE-100 (Cerium Chloride) Ce³⁺ ≈17.9% Ce

Polymer Bench-Tested:

MetClear[™] 2405 (Sulfide-Based Polymer) Anionic Polymer

Chemicals Tested on the Pilot-Scale:

Alum (Aluminum Sulfate) Al³⁺ ≈4.4% Al

Ferric Chloride Fe³⁺ ≈13.5% Fe

RE-100 (Cerium Chloride) Ce³⁺ ≈17.9% Ce

> MetClear 2405 (Sulfide-Based Polymer) Anionic Polymer

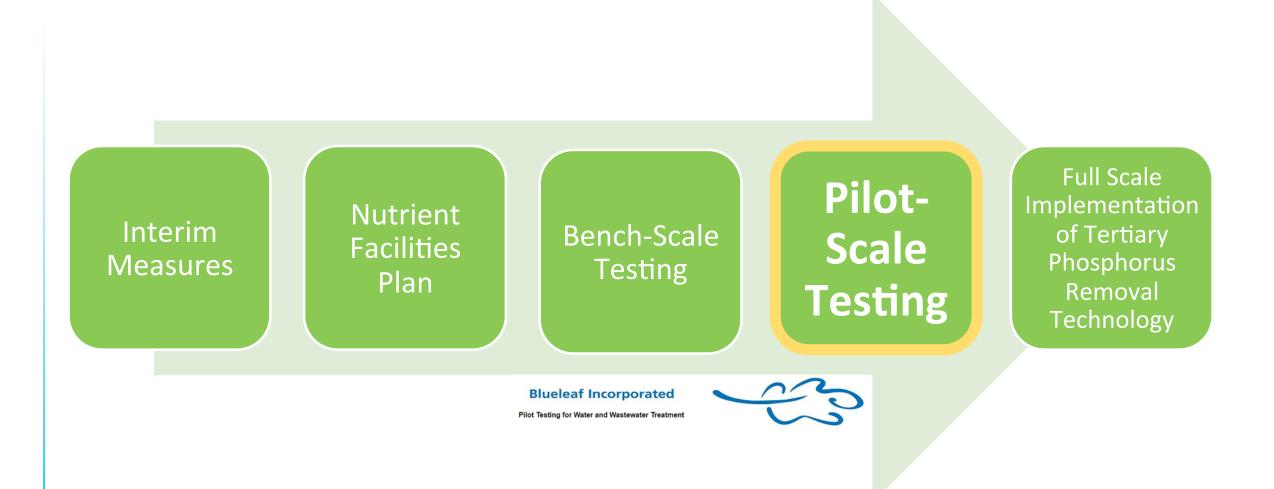
Key Bench-Scale Conclusions

- No pH adjustment required with alum, ferric chloride, and RE-100
- MetClearTM 2405 was able to reduce heavy metal concentrations
 - Copper by >50%
 - Cadmium by 30%

Alum

- Most effective at pH <7
- Molar Ratio- 5:1 (9 mg/L)
- \$34,000/year
 - Least expensive coagulant
- Increases Al concentrations

Ferric Chloride


- Little impact of pH
- Molar Ratio- 5:1 (5 mg/L)
- \$49,000/year
 - Second least expensive coagulant
- Increases Cu concentrations

RE-100

- Molar Ratio- 2:1 (3 mg/L)
- \$286,000/year
 - Higher cost could be offset
 by savings attributed to low
 residuals/solids handling
- No impact on metals

Steps Toward Achieving 2012 TP Permit Limit

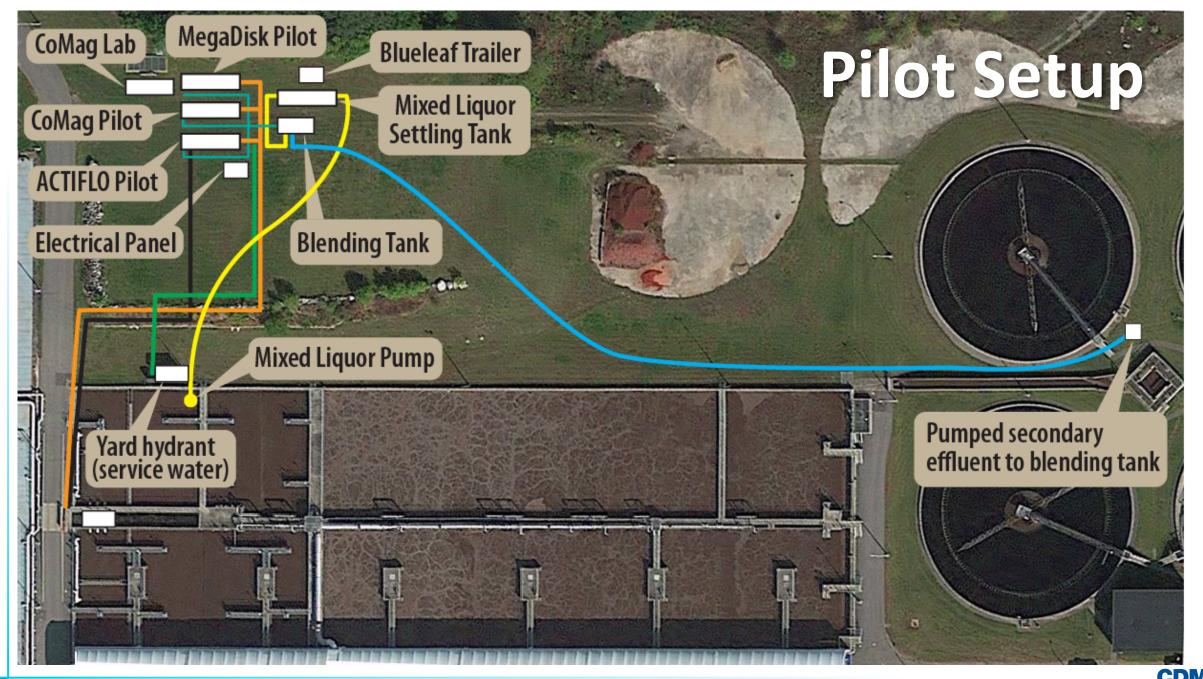
Phosphorus Removal Technologies Piloted

ACTIFLO®- Ballasted Flocculation with Microsand, by Kruger Inc.

CoMag®- Ballasted Flocculation with Magnetite, by Evoqua Water Technologies

Aqua MegaDisk[®]-

Rotating Cloth Filters, by Aqua-Aerobic Systems, Inc.

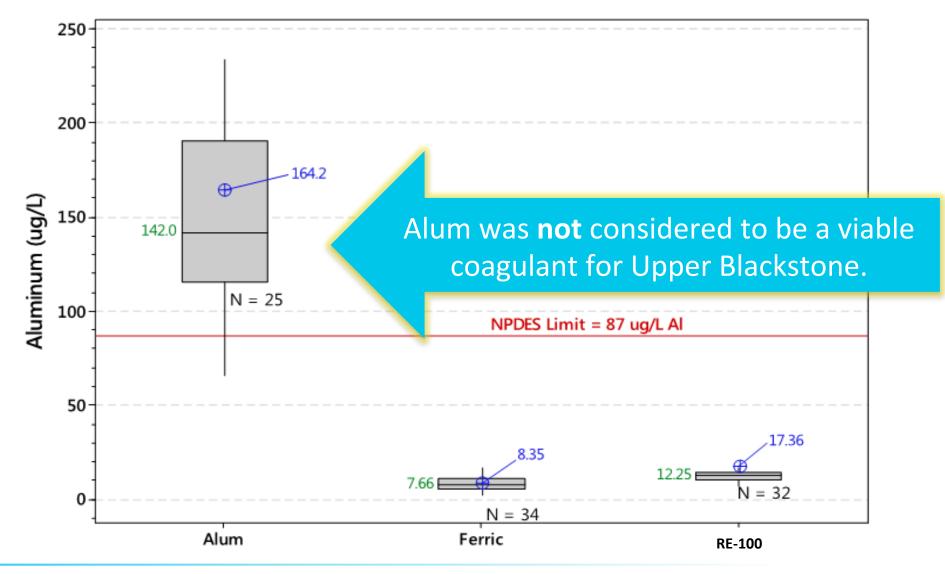


Experimental Approach

August 16 to October 29, 2016

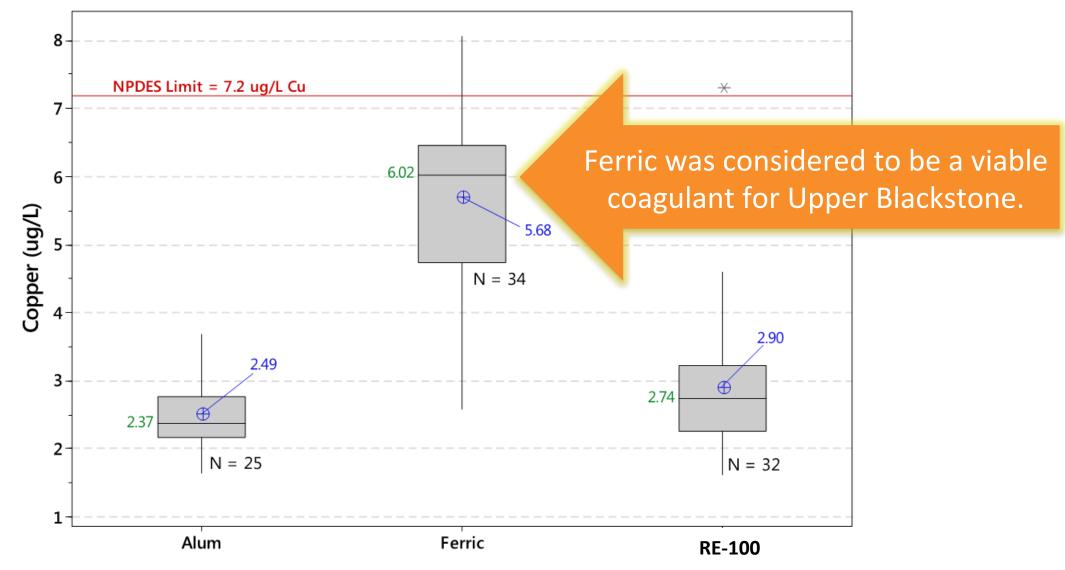
Pilot Influent	Description	Effluent TP Target		
Condition	Description	0.10 mg/L	0.05 mg/L	
1.00 mg/L TP	Design max month and day	Trials 1 & 3	Trial 2	
0.30 mg/L TP	Average secondary effluent 2013-2015 ¹	Trial 4	Trial 5	
30 mg/L TSS	Potential clarifier upset condition/BNR upset condition	Trial 6	Trial 7	
1.00 mg/L TP	Metclear [™] polymer addition for metals removal	Trial 8		
0.1-0.2 mg/L TP	Hydraulic loading (20 MGD to 120 MGD)	Trial 9		
0.1-0.2 mg/L TP	Existing secondary effluent	Trial 10		
0.3 mg/L TP	Additional tests for individual manufacturers	Trial 11		

1. The 95% confidence interval on the mean was selected to represent the average TP into the tertiary system. The actual average of secondary effluent from 2013-2015 was 0.22 mg/L.

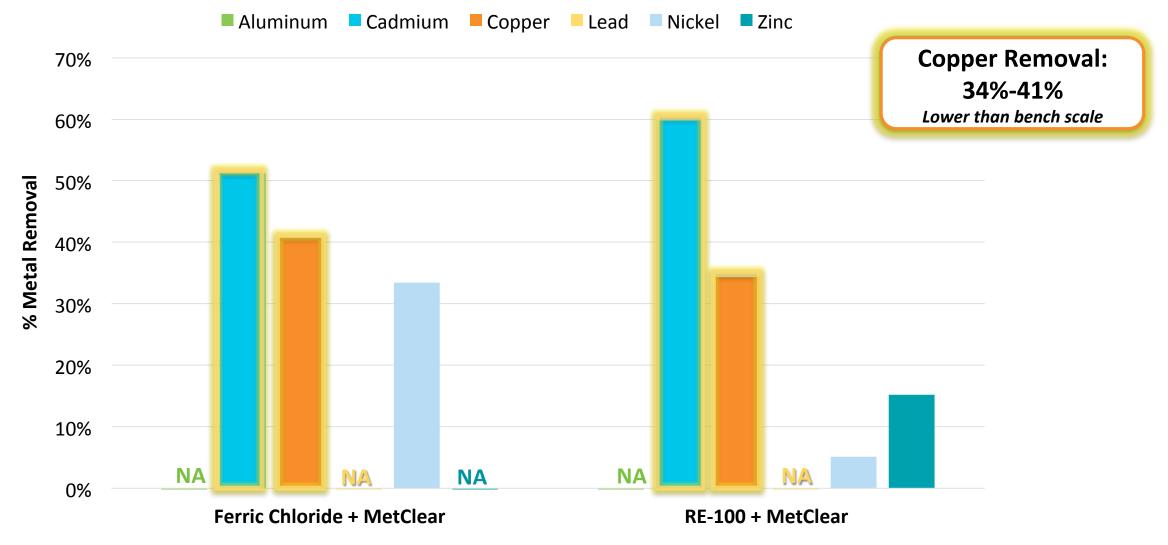

Pilot-Scale Metals Removal Performance:

- No statistically significant difference of metals removal between technologies
- **Coagulant** used did have an impact

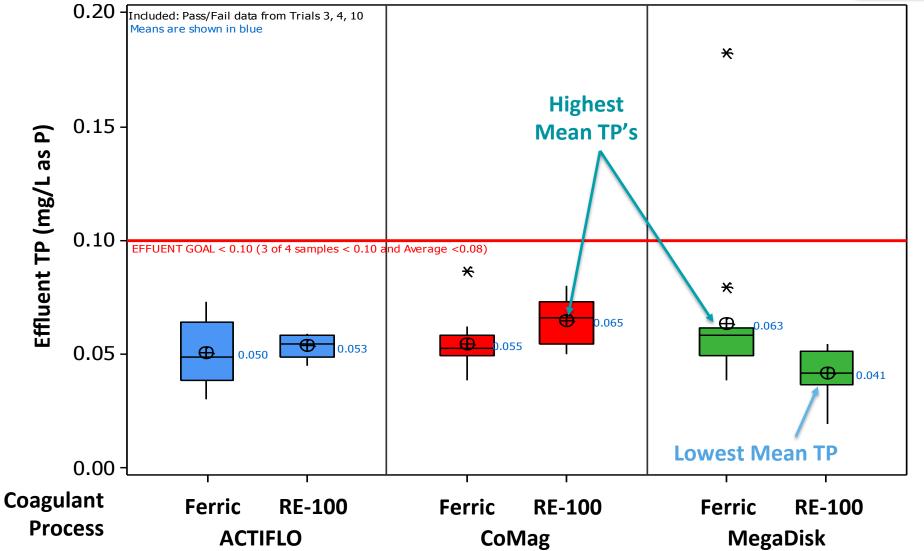
Motol		Mean ± standard deviation (min – max)			
Metal (µg/L)	NPDES Limit	Alum [n=25]	Ferric Chloride [n=34]	RE-100 [n=32]	
Aluminum	87 μg/L	164 ± 1 (66 – 381)	8 ± 5 (ND {1.69} – 26)	17 ± 26 (7 – 155)	
Cadmium	0.2 μg/L	0.24 ± 0.10 (0.07 – 0.43)	0.27 ± 0.09 (0.10 – 0.45)	0.27 ± 0.07 (0.16 – 0.46)	
Copper	7.2 μg/L	2.5 ± 0.5 (1.6 – 3.7)	5.7 ± 1.3 (2.6 – 8.1)	2.9 ± 1.0 (1.6 – 7.3)	
Lead	None (report)	0.31 ± 0.05 (0.22 – 0.35)	0.34 ± 0.05 (0.24 – 0.45)	0.34 ± 0.08 (0.13 – 0.55)	
Nickel	None (report)	3.6 ± 0.77 (2.3 – 5.2)	6.2 ± 2.2 (3.4 – 12)	3.5 ± 0.87 (1.9 – 5.8)	
Zinc	91.3 μg/L	35 ± 9 (18 – 54)	38 ± 9 (25 – 55)	37 ± 8 (28 – 64)	



Coagulant vs. Coagulant: Pilot Scale Resultant **Aluminum** Concentrations

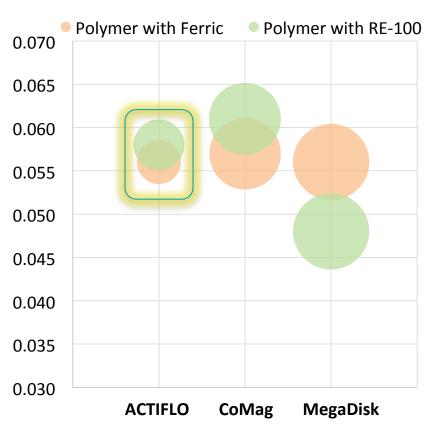


Coagulant vs. Coagulant: Resultant Copper Concentrations


Effectiveness of Sulfide-Based Polymer (MetClearTM 2405) Results from all 3 Pilot Technologies

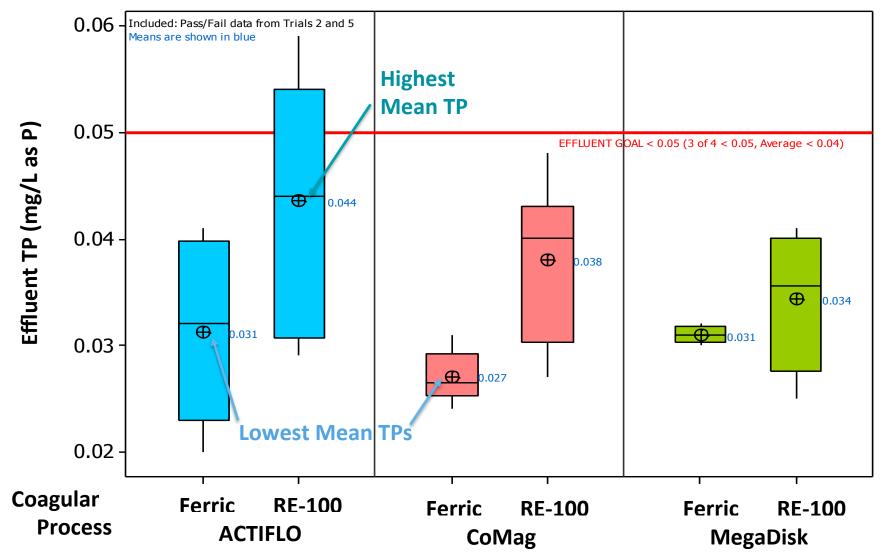
Phosphorus Removal Performance: Effluent Goal=0.10 mg/L TP

Influent TP Concentrations: Trial 3: 1.0 mg/L TP Trial 4: 0.3 mg/L TP Trial 10: 0.1-0.2 mg/L TP



Chemical Dosage Summary: Effluent Goal=0.10 mg/L TP

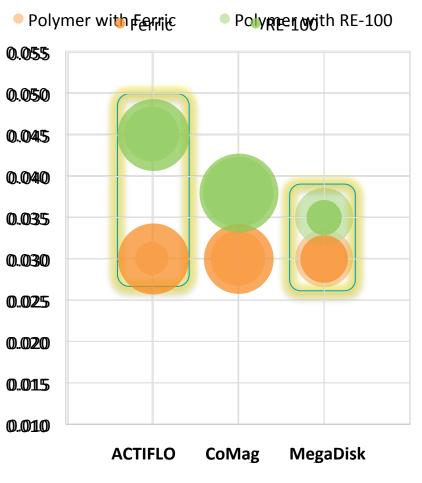
System	Coagulant Dose (mg/L)	Polymer Dose (mg/L)	Effluent TP Achieved (mg/L)	
Ferric Chloride				
ACTIFLO	10.4 (7.71-24.0)	0.30 (0.25-0.45)	0.056 (0.037-0.058)	as P)
CoMag	10.9 (4.92-20.3)	0.79 (0.80-0.99)	0.057 (0.048-0.058)	
MegaDisk	6.87 (1.91-20.3)	0.90 (0.79-0.90)	0.056 (0.044-0.058)	Total Phosphorus (mg/L
RE-100				tal Pl
ACTIFLO	11.0 (8.89-19.9)	0.40 (0.40-0.51)	0.058 (0.048-0.058)	Ţ
CoMag	5.66 (4.98-12.0)	0.80 (0.81-1.39)	0.061 (0.064-0.70)	
MegaDisk	3.59 (1.01-10.9)	0.90 (0.75-1.0)	0.048 (0.030-0.050)	


Bolded= Influent 0.30 mg/L TP (*Italics Range*)=*Min-Max*

Coolyman to secomparison

Phosphorus Removal Performance: Effluent Goal=0.05 mg/L TP

Influent TP Concentrations: Trial 2: 1.0 mg/L TP Trial 5: 0.3 mg/L TP


NEWEA – 2018 Annual Conference & Exhibit

Bolded= Influent 0.30 mg/L TP

Chemical Dosage Summary: Effluent Goal=0.05 mg/L TP

System	Coagulant Dose	Polymer dose	Effluent TP
	(mg/L)	(mg/L)	Achieved (mg/L)
Ferric Chloride			
ACTIFLO	19.9	0.29	0.04
	(up to 53.0)	(up to 0.33)	(0.02)
CoMag	19.2	0.79	0.03
	(up to 48.5)	(up to 0.80)	(0.03)
MegaDisk	8.9	0.89	0.03
RE-100			
ACTIFLO	20.4	0.80	0.045
	(up to 53.7)	(up to 0.91)	(0.031-0.056)
CoMag	24.6	1.32	0.033
	(up to 33.7)	(up to 0.79)	(0.043)
MegaDisk	4.9	0.90	0.031
	(up to 15.4)	(up to 1.60)	(0.039)

Polymer Dose Comparison

т**Бе**а́яр**R**b99я8рыяқ_Мвुg/l_азъ})

Phosphorus Removal Evaluation: Preferred Coagulant

- Each system performs better with one coagulant over the other
 - Lower chemical doses
 - Decreased maintenance
 - Less sludge production
- Preferred coagulant based on pilot performance is:
 - ACTIFLO: ferric chloride;
 - CoMag: ferric chloride;
 - MegaDisk: RE-100

Phosphorus Removal Full-Scale Evaluation: Economic Evaluation

	Add-On Systems for Tertiary Phosphorus Removal				
	ACTIFLO +	MegaDisk +			
	Ferric Chloride	Ferric Chloride	RE-100		
Estimated Relative Capital Costs	\$47,000,000	\$45,000,000	\$33,000,000		
Estimated Annual O&M Costs	\$800,000	\$800,000	\$1,000,000		
Present Worth of 20-Year Life Cycle	\$57,000,000	\$52,000,000	\$50,000,000		
Costs	<i>,000,000</i>	<i>452,000,000</i>	\$50,000,000		

Non-Economic Criteria ACTIFLO

Key Pilot Conclusions

- All systems were capable of achieving the 0.10 and 0.05 mg/L effluent TP objective
- Dosing alum resulted in effluent aluminum exceedances
- Sulfide-based polymer effective in removing Cu, Cd, & Ni (not Al)
- Each technologies achieved the TP goals & with metals limits while dosing FeCl₃ and RE-100
 - FeCl₃ dose must be controlled to avoid elevated Cu
- Ballasted flocculation processes required higher RE-100 doses than cloth filters (absence of hydroxide floc!)
- Non-economic factors were the primary differentiator between systems
 - ACTIFLO with ferric chloride received the highest non-economic score, mainly due to its success at other similarly sized installations

Acknowledgements

Karla Sangrey, P.E. Engineer Director/Treasurer Engineering: Mark Johnson, P.E. & Randy Komssi Plant Operations: Mike Foisy & Joe Nowak

Erik Grotton, P.E. George Swedberg & Fred Lusky

Blueleaf Incorporated

Pilot Testing for Water and Wastewater Treatment

CDM Maureen Neville, P.E. **Smith** William Dana Green, P.E.

Contact us!

Alexandra Bowen BowenAB@cdmsmith.com Maureen Neville NevilleMD@cdmsmith.com

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

Contact us!

Water Partnership with **CDM**

Joe Smith

555-555-5555

email@cdmsmith.com

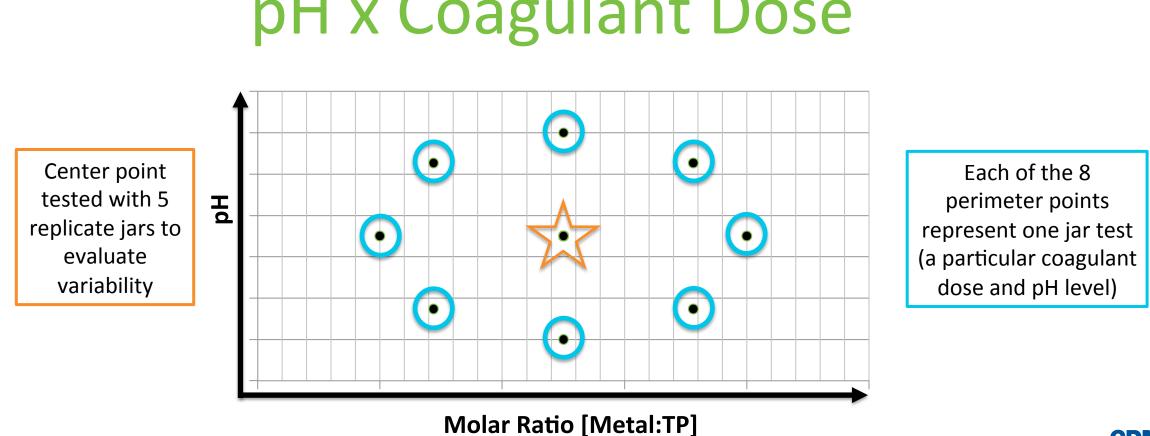
@TwitterAccount

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

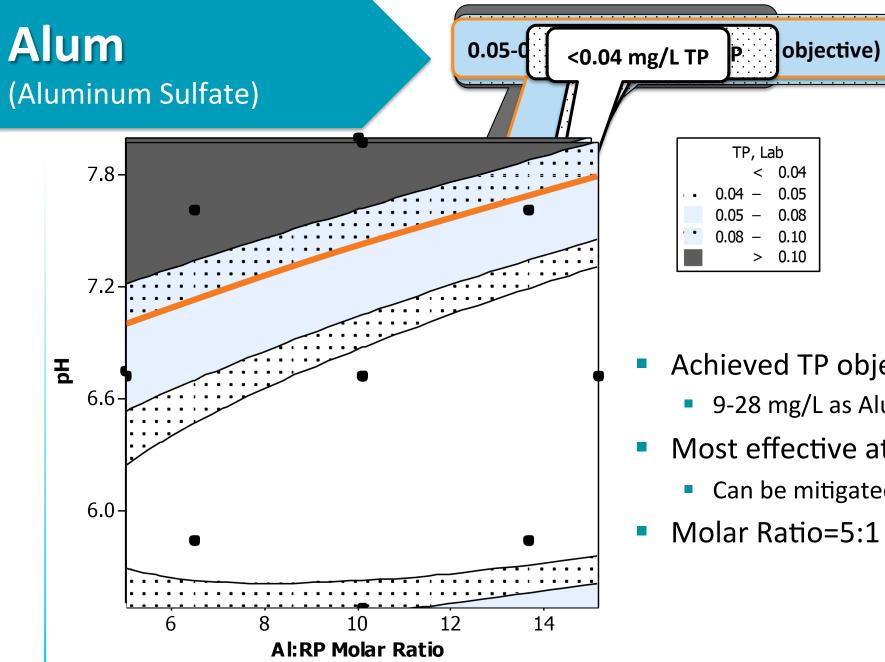
Contact us!

Joe Smith CDM Smith 555-555-5555 email@cdmsmith.com

@TwitterAccount


Mary Smith City of _____ 555-555-5555 email@city.ma.us @TwitterAccount

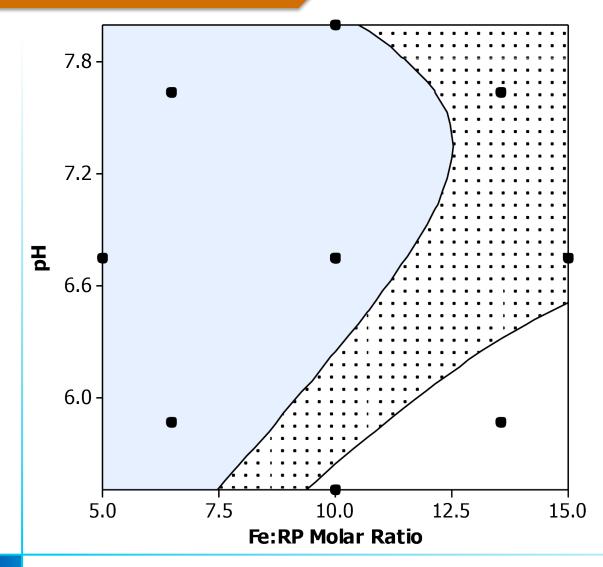
Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

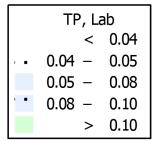

Response Surface Testing Approach:

Evaluates the effect of two independent variables on a dependent variable, when two independent variables interact

pH x Coagulant Dose

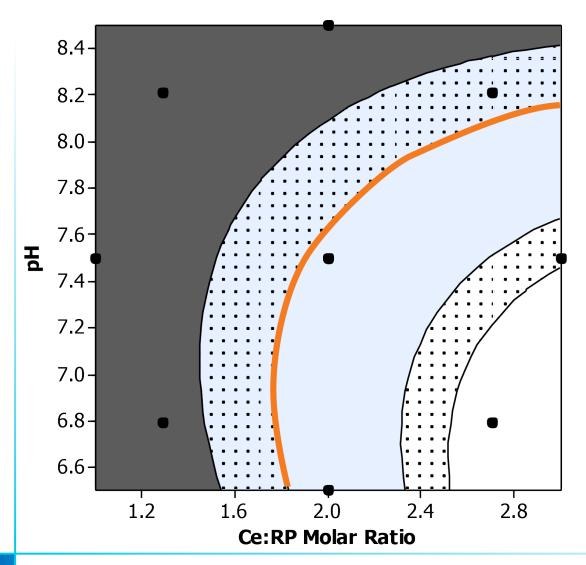
29





- Achieved TP objective at all molar ratios
 - 9-28 mg/L as Alum
- Most effective at pH <7.0
 - Can be mitigated by higher alum doses
- Molar Ratio=5:1

Ferric Chloride



26 Fe 55.85

- Achieved TP objective at all molar ratios tested
 - 5-15 mg/L as Ferric Chloride
- Little effect from pH
- Molar Ratio=5:1
 - Similar to Alum

RE-100 (Cerium Chloride)

TP, Lab				
	< 0.04			
• •	0.04 -	0.05		
	0.05 -	0.08		
	0.08 -	0.10		
	>	0.10		

- Achieved TP objective at molar ratios >2:1
 - 3 mg/L RE-100
- Molar Ratio=2:1
 - The lowest molar ratio of all coagulants

58

140.1

Summary of Tertiary "Solids" Analyses

- Evaluate impact on existing solids handling facilities of chemical "sludge" produced from the tertiary systems
 - Quantity and quality of residuals
- Komline-Sanderson Engineering Corporation
 - Thickened sludge for thickening evaluation
 - Kompress[®] Belt Filter Press
 - Simulate full-scale Kompress[®] G-GRSLX Series III
 - Gravity belt drainage and pressure belt drainage
- Alfa Laval Incorporated
 - Unthickened sludge for dewatering evaluation
 - Thickened sludge for thickening evaluation
 - Centrifuge
 - 3 Belt Klampress
 - Extended Klampress

Summary of Tertiary "Solids" Analyses

Influent TP=0.3 mg/L TP (~secondary effluent)

System	Waste Rate (% of Forward Flow)	TSS of Unthickened Samples (mg/L) ¹	TS of Pre-Thickened Samples		Cake Solids Range (%)	
			Alfa Laval	Komline	Alfa Laval	Komline
Ferric Chloride						
ACTIFLO	3.8%	NA ²	0.83	0.77	17-20	15-16
CoMag	1.0%	770	1.4	0.81	20-23	21-22
MegaDisk	8.8%	58	0.43	0.63	18-22	11-14
RE-100						
ACTIFLO	4.4%	338	1.76	2.88	36-39	26-33
CoMag	0.8%	860	1.49	1.22	24-27	21-23
MegaDisk	9.3%	60	NA ³	NA ³	NA ³	NA ³

Notes:

1. Minimum solids concentration for testing for thickening and dewatering was 0.3% (3,000 mg/L).

- 2. Sample did not survive transport, no TSS analysis was completed.
- 3. Not enough solids generated to collect the required sample volume (4 L).

