

2018 NEWEA Annual Conference Tertiary Filtration Process Performance Testing to Meet 0.05 mg/I Total Phosphorus

Matthew Formica P.E. AECOM Jon Pearson P.E. AECOM Erik Grotton P.E. Blueleaf, Inc. Jeff Pennell, Suez

January 23, 2018

Agenda

- Project Background
- Initial Technology Selection
- Performance Testing Approach
- Performance Testing Results
- Lessons Learned
- Next Steps
- Conclusions

★ Designed by TownMapsUSA.com

cabuc

124

³⁰Bethel

Redding

Project Background

Ridgefield

116)

South Salem

AECOM

Location: Ridgefield, CT

- Population -25,000
- Sewer District 1 South Street WWTF
 - 1.0 MGD Average Daily Flow Capacity
- Sewer District 2 Route 7 WWTF
 - 0.12 MGD Average Daily Flow Capacity
- WWTFs Owned by the Town / Operated by Suez

South Street WWTF

Route 7 WWTF

Wastewater System Facilities Plan

- Facilities Plan Drivers
 - South Street WWTF Flows Around the 90% Design Threshold
 - Age of Facilities
 - ✓ South Street WWTF 1989
 - ✓ Route 7 WWTF 1985
 - NPDES Requirements
 - ✓ Seasonal TP Limits for both WWTFs
 - ✓ Nitrogen General Permit (South Street WWTF only)
 - Potential to Consolidate Operations

Facilities Plan Recommendation

- Decommission Route 7 WWTF
- Pump Sewer District 2 Flow to
 South Street WWTF
 - New Pump Station
 - 14,200 If Force Main
- Upgrade South Street WWTF to
 Meet New Limits (with increased flows)
- Life Cycle Cost Savings of ~\$3.1M

South Street WWTF Permit Phosphorus Limits

(with Sewer District 1 & 2 Flows):

- Seasonal Average Total Phosphorus:
 - 0.52 lbs./day
 - 0.055 mg/l (at design flow of 1.12 mgd)
- Monthly Average Total Phosphorus Concentration:
 - 0.16 mg/l
- Daily Maximum Total Phosphorus Concentration:
 - 0.31 mg/l

cabuc

^{3C}Bethel

Redding

AECON

Initial Technology Selection

116

Ridgefield

South Salem

Tertiary Phosphorus Removal Technologies Considered

- Ballasted Flocculation
 - Kruger Actiflo
- Continuously Backwashing Sand Filtration
 - Parkson Dynasand
 - Nexom Blue PRO

System Layouts

- Existing Dynasand Filter
 - 6 Filter Cells (two modules each)
 - Implemented in 1989 WWTF Upgrade for Solids Removal

- Actiflo
 - Two Treatment Trains
 - Use Existing Filter Space
 - Significant Structural Modifications Required

- Dynasand
 - Two Stage System Required
 - Need Intermediate Pump Station

- Dynasand
 - Each Stage 10 Filter Cells (Two Modules Each)
 - Stage 2 Cannot Fit in Existing Filter Area

- Blue PRO
 - 8 Filter Cells (Two Modules each)
 - Can Fit Into Existing Filter Space

Estimated Life Cycle Cost Analysis

	Process Alternatives		
Costs	Actiflo	Blue PRO	Dynasand
Total Capital Cost	\$6.4 M	\$3.8 M	\$9.6 M
20 Year Present Worth O&M Costs	\$2.7 M	\$1.3 M	\$3.9 M
Total 20 Year Present Worth	\$9.1 M	\$5.1 M	\$13.5 M

Blue PRO Recommended for Implementation

DEEP agreement to allow for sole source selection of Blue PRO to advance design

- Unique case where the retrofit of the Blue PRO process into the existing filter cells would require:
 - Minimal Modifications
 - Addition of Only Two Filter Cells
- Preselection Process would:
 - Not Change Technology Selected
 - Add to the Project Cost
 - Add to the Project Schedule

cabuc

^{3C}Bethel

Redding

AECON

Performance Testing Approach

Ridgefield

116)

South Salem

Performance Testing Approach

Performance Verification Testing

- First Step In Design Effort
- Assess Chemical Dosing/Performance
- Increase Confidence at Full Scale to Meet the 0.055 mg/I TP Limit
 - Owner
 - Engineer
 - Blue PRO (Nexom)
 - DEEP
- 60 inch Bed Depth
- Single Stage

Performance Testing Evaluation Approach

Blueleaf, Incorporated

- Pilot Delivery, Commissioning, and Operation with Vendor
- Sampling Collection
- Field and Certified Laboratory Analysis
- Decommissioning
- Data Statistical Analysis
 - 2² Factorial Experiment
 - ANOVAs

Sample Analysis

- Total P
- Soluble P
- Ortho P
- TSS
- Alkalinity
- Zinc
- Turbidity
- UVT
- Iron

Performance Testing Approach

Phosphorus Goals

- -Evaluate the Reduction of Phosphorus:
 - Target Influent TP of 0.5 mg/l
 - Meet a Effluent of 0.05 mg/l
 - Target of 90% TP removal
- -Evaluate Impact of:
 - Loading Rates
 - Varying Dose of Ferric Chloride and Polymer

Trial Conditions - Coagulant and Polymer Dose Evaluations

Operating Conditions

- Trials 1-3 @ 3 gpm/ft2
 - 2² Factorial Experiment (Modified)
- Trials 4 @ 3 gpm/ft2
 - Best Conditions from Trial 1-3 With and Without Polymer

– Trial 5 @ 5 gpm/ft2

cabuc

³⁰Bethel

Redding

AECON

Performance Testing Results

Ridgefield

116)

South Salem

Trial Filter Influent Total Phosphorus Concentrations

Influent Variations

- Final Settling Tank
 Effluent
- Target 0.5 mg/I TP
- WWTF Operations Adjustments

Filter Effluent Total Phosphorus Contour Plot

Operating Conditions

- $-3 \text{ gpm/ft}^2 \text{ loading}$
- Influent TP <u>></u> 0.5 mg/l

Performance

- Met Limit at 12.5 mg/l Fe
- Polymer had Some Impact on Effluent TP

Filter Total Phosphorus Percent Removal Contour Plot

Operating Conditions

- -3 gpm/ft² Loading
- Influent TP \geq 0.5 mg/l

Performance

- Fe Impact is Significant
- Polymer Impact More
 Significant at Higher Fe
 Concentrations
- Polymer Addition May Allow for Reduction in Fe Dose

Filter Total Phosphorus – Trial Concentrations

Performance

I)

- @ 3 gpm/ft² Can Meet 0.05 mg/
 I at Higher Fe Doses
- Polymer Improves Performance at Higher Fe Doses
- Limited Success to meet 0.05
 mg/l at 5 gpm/ft² (Trial 5)
 - Peak Day Permit Limit (0.31 mg/

121

124

cabuc

Bethel

Redding

AECOM

Lessons Learned

Ridgefield

02

(116)

South Salem Old Post Rd WS

Lessons Learned

- Start Needed WWTF Process Changes Early
- Optimistic vs. Realistic Piloting Schedule
 - Equipment Checkouts
 - Steady State Conditions After Pilot Process Changes
- Invest in Field Testing (in addition to lab testing)
- Be Flexible

121

124

³⁰Bethel

Redding

North Selem Next Steps

Ridgefield

102

(116)

South Salem

AECOM

Next Steps – Design and Contract Bidding

- Advancing Blue PRO Process Design
 - Blue PRO (Nexom) to Provide Design Package
 - Blue PRO Scope/Fee/Design Package to be Included in Bid Documents
- Established Parameters for Chemical Dosing (Include Polymer)
- July 1, 2019 Contractor Award Date (DEEP 50% Phosphorus Grant Funding)

121

124

³⁰Bethel

Redding

Conclusions

Ridgefield

02

116

South Salem

AECOM

Conclusions

- Blue PRO Process Met the WWTF
 Effluent TP Target of 0.05 mg/l
- Performance Testing Provided Valuable
 Design Information
 - Ferric Chloride Doses
 - Impact of Polymer on TP Removal
- Increased Level of Confidence that a Single Stage Could Achieve Goals.

Drawing a conclusion!

AECOM Imagine it. Delivered.