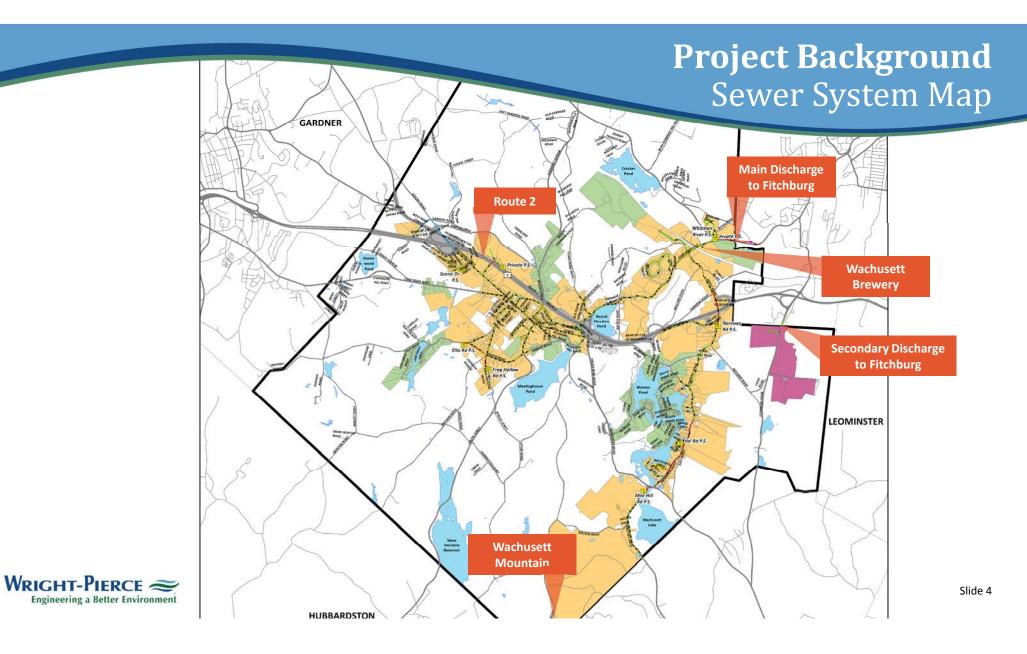
Kevin Olson, PE, Wright-Pierce

Westminster's Approach to Increasing Sewer System Capacity and Cost-Effectively Lifting its Sewer Connection Moratorium: Inline Storage!

aled Oct. 30

Presented at the 2018 NEWEA Annual Conference Session 28

- Introduction
- Existing System
- Project Background
- The Challenge
- Alternatives Considered
- The Solution
- Design and Construction
- Questions and Discussion



Introduction

- Town's Collection System 35 Years Old
 - Wachusett Mountain 1982
 - Downtown Sewer mid-1990's
 - Last Major Sewer Extension 2004
- Wastewater Discharged to City of Fitchburg
 - Via Inter-Municipal Agreement (IMA)
- Two Connection Points
 - Rte. 31
 - Rte. 2A via Whitman River Pumping Station (WRPS)
- 99.8% of Town's Wastewater via WRPS

Existing System

- 25.1 Miles of Piping Gravity (18.9), Forcemain (3.3), Pressure (2.9)
- 7 Pumping Stations (Mile Hill Rd. PS Owned/Operated by Wachusett)
- WRPS Station Influent
 - 18-inch Diameter PVC Pipe
 - 1,050 Feet between Wachusett Brewing Co. and Pump Station
- Forcemain
 - 2,800 feet of 6-inch Diameter PVC Pipe
 - Private PS Connects Directly to this Forcemain
 - Flow metering at Monty Tech HS Palmer-Bowlus Meter
- Receiving Sewer (Downstream of PS FM)
 - Located in Route 2A in Fitchburg
 - 12-inch Diameter VC Sewer

Existing System

Whitman River Pumping Station

- Flooded Suction, "Tin Can" Type
- Constrained Site MA DOT ROW, Wetlands
- Dual wetwells, Steel Drywell
- Centrifugal Pumps, Bubbler Level Control
- Natural Gas Fueled Generator
- Upgraded in 1988 and 2000
- Pump Ragging Problems

Project Background

- System Capacity Limited by WRPS and Receiving Gravity Sewer
- Sewer Moratorium Implemented
- CWMP Completed in 2007
- CWMP Recommends 5 Sewer Expansion Phases
 - Need to Resolve Capacity Limitation First
 - Phase A Replace WRPS, Force Main and Receiving Gravity Sewer (in Fitchburg)

Project Background

- Town Retains Wright-Pierce in 2008 to Execute CWMP Recommendations
- Complete Phase A
- Initial Project Questions
 - Fitchburg Sewer Capacity Upgrade How? Who Pays?
 - Size, Type, Location, Cost of New Station
 - Peak Flows? Capacity of New Station?

Project Background Location

Force Main Discharge SMH

Meter SMH

200

Montachusett Regional Vocational Technical School

6" PVC FM

Whitman River Pump Station

4' x 8' – In-Line Storage Culvert

Wachusett Brewing Company

MBTA Commuter Rail (Fitchburg Line)

WRIGHT-PIERCE C

Whiten

Slide 9

600

400

Project Background Wastewater Flows

<u>ltem</u>	<u>Flow</u>
IMA Flow	250,000 gpd
Existing Average Daily Flow	180,000 gpd +/-
Existing Peak Daily Flow	1,000,000 gpd (690 gpm)
WRPS Flow Capacity	550 - 600 gpm +/-
Receiving Sewer Capacity	860,000 gpd (600 gpm) +/-

Notes: 1. Whitman River Area Flows only (does not include Route 31 Connection).

2. Average Daily Flow has Increased from CWMP Flow (135,000 gpd).

Project Background Future Wastewater Flows

<u>Item</u>	<u>Flow</u>
Existing Average Daily Flow	135,000 gpd
Estimated Future Average Daily Flow	165,000 gpd
Estimate Sewer Expansion Flows	200,000 gpd
Phase 1 Sewer Expansion Flow	42,000 gpd
Phase 2 Sewer Expansion Flow	30,000 gpd
Phase 3 Sewer Expansion Flow	25,000 gpd
Phase 4 Sewer Expansion Flow	15,000 gpd
Phase 5 Sewer Expansion Flow	88,000 gpd
Estimated Average Daily Flow	500,000 gpd
Estimated Peak Daily Flow	2,100,000 gpd

Note: Flows from CWMP. Current ADF is currently 180,000 gpd +/-.

Project Background

Moved Into Preliminary Design Phase

- Performed Flow Metering to More Accurately Determine Peaking Factor/Flow, and Evaluate I/I
- Decided to Eliminate Pump Station and Force Main Upgrade
 - Install Siphon Under River
- Still Need to Increase Capacity of Receiving Gravity Sewer in Fitchburg (i.e., increase pipe size or install second pipe)
- Project Cost Estimate **\$5M**

The Challenge

Overcome Capacity Constraint

ift Moratorium

- Continue to Manage Sewer User Costs
 - Fitchburg Raised Rates 68% in 2013
- Town Hesitant to Move Forward Due to:
 - Cost
 - Desire/Need to Expand Sewer System
- Consider Alternatives

Alternatives Considered

Discontinue Discharging to Fitchburg

- Construct WWTF with GWD in Westminster
- Discharge to Gardner via Ashburnham

Continue Discharging to Fitchburg

- Directly to Fitchburg West Pump Station (formerly Fitchburg West WWTF)
- Re-route Whitman River Area Flow to Route 31 (away from WRPS and Rte. 2A Sewer)

Alternatives Considered

Discontinue Discharging to Fitchburg

- Construct WWTF with GWD in Westminster
- Discharge to Gardner via Ashburnham

Continue Discharging to Fitchburg

- Directly to Fitchburg West Pump Station (formerly Fitchburg West WWTF)
- Re-route Whitman River Area Flow to Route 31 (away from WRPS and Rte. 2A Sewer)

Alternatives Considered Continue Discharging to Fitchburg

Consider less Costly Solutions that:

- Allow Partial Sewer Expansion to Occur (Phases 1, 2 and 5)
- Does not Include Receiving Sewer Modifications

• Evaluated Two Alternatives:

- Modest PS Capacity Modifications
- Storage offline and inline

The Solution

- Modest PS Modifications Not an Option due to Receiving Sewer Constraints
 - Eliminated from further consideration
- Storage Options Provide Storage for Peak Flows above PS Capacity
 - Offline costly, need to hold and pump-back, aeration/mixing?, odor control?
 - Inline different, no need to pump-back, less costly, needed to vet with DEP and MA DOT

✓ Inline Storage Selected (Interim or Long-Term Solution?)

Inline Storage Flows

<u>ltem</u>	<u>ADF</u>	PDF (gpd)	PDF (gpm)		
Existing Flow		1,000,000	694		
Sewer Expansion Area Flow					
Phase 1	42,000	106,000	74		
Phase 2	30,000	74,000	51		
Phase 5	88,000	219,000	152		
Subtotal:	160,000	400,000	277		
Total:	160,000	1,400,000	971		

Note: Existing Peak Flow Based on Feb. 24/25, 2010 storm.

Inline Storage Sizing

- Site and Existing System Profile Constraints Dictated Sizing and Design
 - 4' x 8' cross-section, 850 feet, less 10% for interior concrete filleting
 - Provides 185,000 gallons of storage capacity
- Size will Handle Existing Peak Flows and Phases 1, 2 and 5 Sewer Expansion Flows
- Used EPA SWMM to Vet Sizing

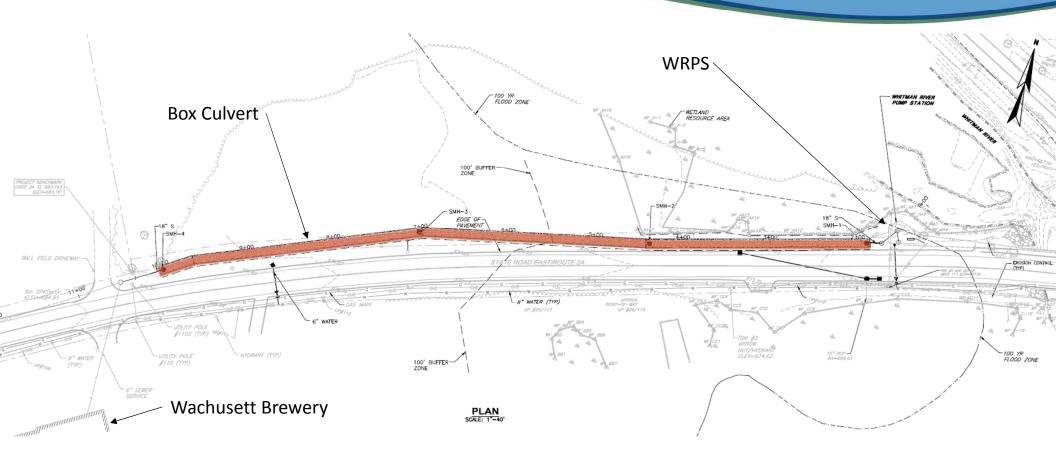
Inline Storage Modeling

SWMM Summary

- 5 Scenarios run
- ADF added to hydrograph for entire storm
- PDF added to peak 8 hours of hydrograph
- Conclusion box culvert can handle flows 24% higher than peak flows

TABLE 2 IN-LINE STORAGE CONDUIT SWMM MODEL RESULTS

			1 Pump Operating		2 Pumps Operating		Peak HGL in Storage Conduit		Peak	Stowage	Flooding		
Model Run	System Geometry	Flow Conditions	Pumping Rate (gpm)	Duration (hr)	Total Volume Pumped (MG)	Pumping Rate (gpm)	Duration (hr)	Total Volume Pumped (MG)	U/S	D/S	Volume Stored Con	Storage Conduit % Full	onduit to Grade
1	Existing	Existing	603	53.41	1.932	612	3.73	0.140	678.39	668.76	104	-	No
2	Existing	Future	603	65.66	2.375	612	12.86	0.482	678.45	674.30	10,303	-	Yes
3	Proposed	Existing	603	52.57	1.901	612	4.63	0.170	678.39	668.49	5,190	-	No
4	Proposed	Future	603	53.94	1.951	612	27.50	1.010	678.45	671.67	119,390	64.00	No
5	Proposed	Future*(1.24)	603	41.80	1.512	612	53.33	1.958	678.48	674.11	186,200	100.00	No


Design Inline Storage Details

- Replace 18-inch Gravity Sewer with Box Culvert
- Box Culvert Specifics:
 - 4' x 8' Precast Concrete Sections (111 pcs), Various Lengths
 - Exterior Bituminous Coated
 - V-notched Bottom for Scouring Velocity
 - Access Provided via 4 MH Sections
 - Hydrants Provided for Flushing
 - Special Segment Testing Equipment Required

Design Inline Storage Plan

WRIGHT-PIERCE Engineering a Better Environment

WRPS Improvements

- New Pumps/Motors Flygt N Impeller, Dry-Pit Submersible (20 Hp)
- New Increased Diameter Piping and Valves
- Added VFD's and New Controls Above Grade
- New Emergency Generator (100 Kw)
- New Forcemain Bypass/Pig Launch System
- New Ventilation System
- New SCADA Communication with Private PS

Other Project Items

- Permitting
 - MA DOT Access Permit Lengthy Process
 - Wetlands Protection Act
- Water System Extensions/Hydrants (Flushing)
- Drainage Improvements
- Private Station Control Interlock
- Bypass Pumping for Culvert and PS Upgrades

Pre-Construction

Post-Construction

//

FD11 This photo seemed stretched. I tried to fix it a little but if you have the original I can drop it in and fix it. Faye DeMoura, 1/19/2018

Construction Impediments

Pre-Construction WRPS

Project Funding/Cost

USDA RD Grant/Loan Funded \$2.5 M

- Grant \$471,000
- Low Interest Loan \$2,029,000

Inline Storage Project - \$2.25M I/I Control Plan and SSES = \$0.25M

Contractor Costs

WRIGHT-PIERCE

Engineering a Better Environment

- Bid \$1.956 M
- Inline Storage \$1.15 M
- PS Improvements \$0.6 M
- Other Piping, Hydrants, Drainage, etc. \$0.2 M
- Change Orders Net \$104K Credit (final cost ~ \$1.852 M)

I/I Control Plan - \$80K, SSES Pending (\$200K budget remaining)

Schedule

<u>Item</u>	<u>Date</u>
CWMP	2007
Commence Design of Improvements	2008
Change Improvements Approach	2009 – 2011
Inline Storage Commenced	2012
MA DOT Permitting	2012 – 2015
USDA RD Funding Approval	2015
Inline Storage Design Completed	2016
Bid Opening	Fall 2016
Construction	2016 - 2017
Town Lifts Moratorium	December 2017

Unique Project Items/Lessons Learned

- MA DOT Coordination
- Quality of Precast Box Culvert Sections
- Box Culvert Joint Testing
- Box Culvert Cleaning Method
- Pump Station Low Level Float Ragging

The Bad

The Good Slide 35

Summary

- Think "Out of the Box"
- Different Approach, but Viable Solution!
- Town Saved Nearly \$2.8 in Capital Cost
- Has the "storage volume" been Used Yet?
- Interim or Longer-Term Solution? Time will Tell!

Acknowledgements

OWNER

Joshua W. Hall, PE DPW Director

Peter R. Martineau, Jr. Sewer Foreman

Public Works Commissioners

Lorraine J. Emerson

Vance A. Butterfield

Scott H. Ryder, PE

GENERAL CONTRACTOR

Ludlow Construction Co., Inc.

FUNDING AGENCY

USDA – Rural Development Grant/Loan

ENGINEER

Kevin M. Olson, PE Project Manager

Barry A. Yaceshyn, PE Lead Project Engineer

All of the Wright-Pierce Team!

Thank You

Faled Oct. 201

Westminster's Approach to Increasing Sewer System Capacity and Cost-Effectively Lifting its Sewer Connection Moratorium: Inline Storage! Session 28

