Using WQS Variances to Implement an Adaptive Management Approach to Nutrient Source Control

Greg Currey Clair Meehan

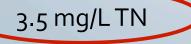
Tetra Tech, Inc.

NEWEA Conference January 22, 2018

1

Nutrient Pollution

- For assessed waters nationwide, nutrients are:
 - 3rd leading cause of impairment in river and stream miles
 - 2nd leading cause of impairment in lakes, reservoirs, and pond acres


 States have identified over 11,000 nutrient-related impairments

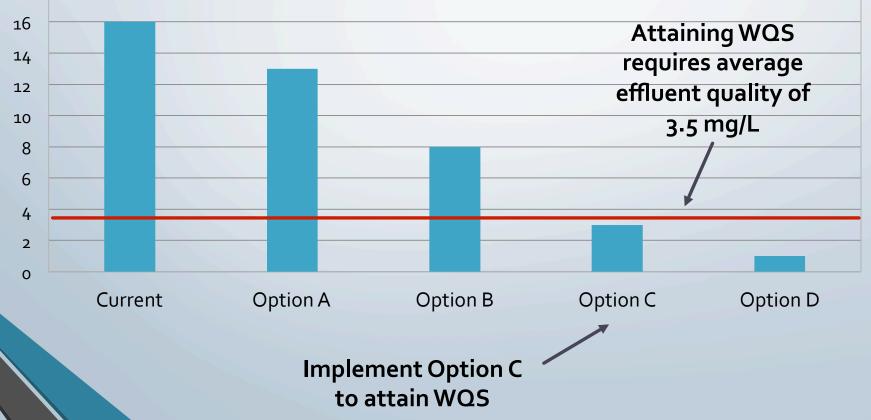
Nutrient Criteria in WQS

- Some states have numeric criteria total nitrogen and total phosphorus (statewide or site-specific)
- Most states have narrative criteria for nutrients—interpreted through numeric targets
- New England states
 - All have narrative criteria
 - Several have site-specific numeric criteria
 - Maine is developing combined causal and response variable criteria
- Increasing numbers of permits with nutrient monitoring and limits

Example: Anytown WWTF

- Conventional activated sludge system
- NPDES requires TN and TP monitoring
 - Average effluent TN concentration = 16 mg/L
 - Average effluent TP concentration = 3.7 mg/L
- Effluent flow
 - Maximum weekly average = 2.4 MGD
 - Design = 3.8 MGD
- Anticipating new, seasonal effluent limitations for TN and TP based on achieving average concentrations of:

0.25 mg/L TP


Evaluate Options for Attaining WQS—TN

Option	Target Effluent Concentration (TEC)	Treatment Technology Options
Α	13 mg/L TN	Optimize existing process (e.g., aeration control)
В	8.o mg/LTN	Configuration modifications (e.g., create anoxic zone), install new mixers and blowers, upgrade control system
С	3.0 mg/L TN	Upgrade to biological nitrogen removal (BNR) (e.g., nitrification/denitrification via anoxic/oxic zone or cycle retrofits; denitrification filter)
D	< 1.0 mg/L TN	Reverse osmosis (RO)

Meeting WQS Could Require Significant Improvement in Effluent Quality...

Total Nitrogen (TN) Effluent Concentrations Achieved by Treatment Options (mg/L)

18

...but Achieving the Required Effluent Quality Might not be Feasible

Water Quality Standards Variances— 40 CFR 131.14

A water quality standards variance for a discharger(s).

- Time-limited designated use and criterion for a specific pollutant(s) or water quality parameter(s)
- Can be an effective tool for adaptive management
 - Temporary change to WQS (requires EPA approval)
 - Specifies highest attainable condition (HAC) that applies for duration of variance
 - Duration is the time justified as needed to achieve HAC
 - Upon expiration, the discharger must meet requirements based on the underlying WQS or apply for a new variance

Using Variances to Achieve Incremental Progress

Highest Attainable Condition (HAC)

-**TO** -**SO** -**3O** -**4O 2O 4O** - **3O** - **5O 7O** -

|

-10 -20 -30 -40 50 40 30 20 10

Underlying WQS

Why Variances?

• For the regulatory authority:

- Avoids punting on an important water quality concern
- Allows progress when ability to attain WQS is not certain
- Where underlying WQS are not attainable, provides time to determine what is attainable

• For the discharger:

- Focuses resources on working with the regulatory authority to make improvement vs. fighting new requirements
- Provides time to put nutrient control in the context of an overall game plan for facility improvements and upgrades
- Cost effective investment—small expenditure of resources now for better decision-making in the future

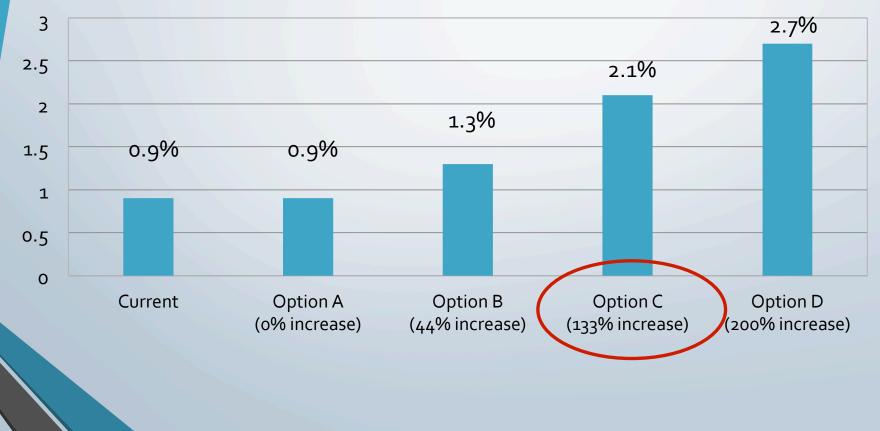
How Do You Get a Variance?—Justification

- Justification based on one of seven factors outlined in federal regulations at 40 CFR 131.10(g) (as required by 40 CFR 131.14(2)(i))
- Most common justification is that "Controls more stringent than those required by sections 301(b) and 306 of the Act would result in substantial and widespread economic and social impact"

Step 1: Evaluate Option(s) for Attaining WQS

Determine whether upgrading to attain WQS is feasible now or through enforceable sequence of events

- Estimate cost of the technology
 - Planning level analysis using literature values to calculate capital and O&M costs
 - Annualized costs (Interest rate = i %; Term = n years)
- Justify variance based on showing that impact on the community will be *substantial* and *widespread* ["factor 6" in 40 CFR 131.10(g)]


Substantial Economic and Social Impact Analysis

Substantial Economic and Social Impact Analysis: after estimating annualized treatment costs to achieve WQS, assess magnitude of cost burden with respect to the community's income and other relevant indicators of financial capability

- Municipal Preliminary Screener
- Secondary Test

Anytown WWTP— Evaluate Cost of Attaining WQS

Annual Pollution Control Costs per Household as % of Median Household Income (MHI)

Anytown WWTP Step 1: Evaluate Option(s) for Attaining WQS

• Municipal Preliminary Screener—costs per household

- Anytown current pollution control costs = 0.9% of MHI
- Pollution control costs to meet WQS= 2.1% of MHI
 - <1.0% MHI = little impact—likely not substantial</p>
 - 1.0%-2.0% MHI = mid-range impact—may be substantial
 - > 2.0% MHI = large impact—may be substantial
- Upgrading to meet WQS may result in substantial impact
- Move to Secondary Test

Anytown WWTP—Secondary Test

- Secondary Test—financial and socioeconomic conditions
 - Score financial indicators (bond rating; debt indicators)
 - Score socioeconomic indicators (unemployment; MHI vs. state median; property tax revenue; property tax collection rate)
 - Scoring for each indicator: 1=weak; 2=mid-range; 3=strong
 Anytown Total Secondary Score = 2.0

Anytown WWTP

Substantial Impact Analysis—Conclusion

 Conclusion: municipal preliminary screener (MPS) combined with information from the secondary test shows that *impact is likely to be substantial... move to* Widespread Analysis

Assessment of Substantial Impacts Matrix (Table 5-2 from EPA Guidance)					
MPS:	2.1%				
Secondary Test Score:	2.0				
Secondamy Test Secre	MPS				
Secondary Test Score	Less than 1.0 Percent	Between 1.0 and 2.0 Percent	Greater than 2.0 Percent		
Less than 1.5	?	Х	X		
Between 1.5 and 2.5	✓	?	Х		
Greater than 2.5	\checkmark	\checkmark	?		

- Key:
- / Impact is <u>not</u> likely to be substantial
- X Impact is likely to be substantial
- ? Impact is unclear

Anytown WWTP— Widespread Impacts Analysis

 Widespread Impacts Analysis: assess the likelihood that substantial economic and social impacts on the community will be widespread

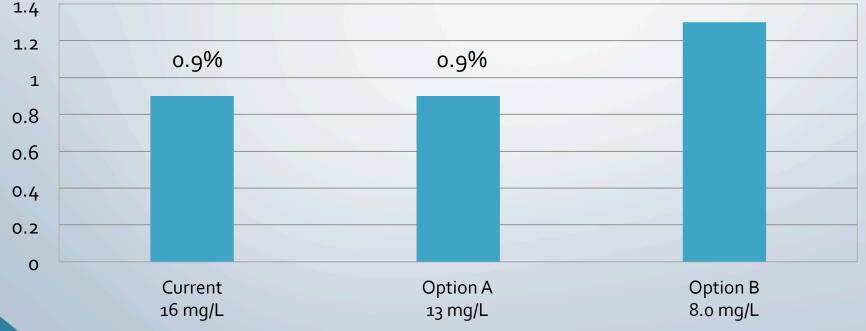
• Consider:

- Household Income
- Unemployment rate
- Poverty rate
- Vulnerable Industries
- Property value

Anytown WWTP Widespread Impacts Analysis—Conclusions

- Higher sewer rates could make community less attractive (residents and businesses) in the long-term
- Additional burden felt most strongly by poverty-level households
- Substantial impacts community-wide could result in negative changes to broad indicators of community financial health
- Conclusion: substantial impacts likely to be widespread across the community

Anytown WWTP Step 1—Conclusions


Step 1 Conclusions:

- Cost of upgrading to meet underlying WQS would lead to substantial and widespread economic and social impact [40 CFR 131.14 and 131.10(g)]
- Anytown WWTF is eligible for a WQS variance
- Next Step: Evaluate options for incremental improvements—determine highest attainable condition (HAC)

Anytown WWTP Step 2: Evaluate Options for Incremental Improvements—HAC

Annual Pollution Control Costs per Household as % of Median Household Income (MHI)

Anytown WWTP Step 2: Evaluate Options for Incremental Improvements—HAC

- Accounting for pollution control costs as % of MHI, rate increase, and other socioeconomic factors:
 - Option A: no impact
 - Option B: lower end of "mid-range impact"
- Previous widespread analysis showed that substantial impacts likely to be widespread

Establishing HAC to Achieve Incremental Progress

Highest Attainable Condition (HAC)

Underlying WQS

<u>111 | 1</u>

-**TO** -**SO** -**4O 2O 4O** - **3O** - **7O** -

| . . . | . . .

| . . . |

-10 -20 -30 -40 50 40 30 20 10

Anytown WWTP Step 2—Conclusions

Step 2 Conclusions:

- Propose HAC = average TN of 8.0 mg/L based on Option B
 - better performance than Option A
 - meets objective of incremental improvement
 - affordable based on economic and social impact analysis
- Need additional time to implement improvements
- Next Step: Implementation

Anytown WWTP Step 3: Implementation

Variance adoption and approval

- Request submitted to regulatory authority for review and adoption
- EPA review required—applicable under CWA only if approved

NPDES permit

- HAC in approved variance becomes the WQS for purposes of NPDES permitting
- Permit compliance schedule may be authorized if time needed to attain HAC
- HAC must be reevaluated if term of variance is > 5 years
- After HAC is achieved
 - meet underlying WQS or
 - new variance adopted and approved

Questions?

Greg Currey gregory.currey@tetratech.com 703-385-1303

Clair Meehan clair.Meehan@tetratech.com 508-734-5513