GZA GeoEnvironmental, Inc.

NEWEA 2018

January, 2018

Proactive By Design.
Our Company Commitment

Resilience Plan for the Stratford, CT Water Pollution Control Facility

Stratford, Connecticut

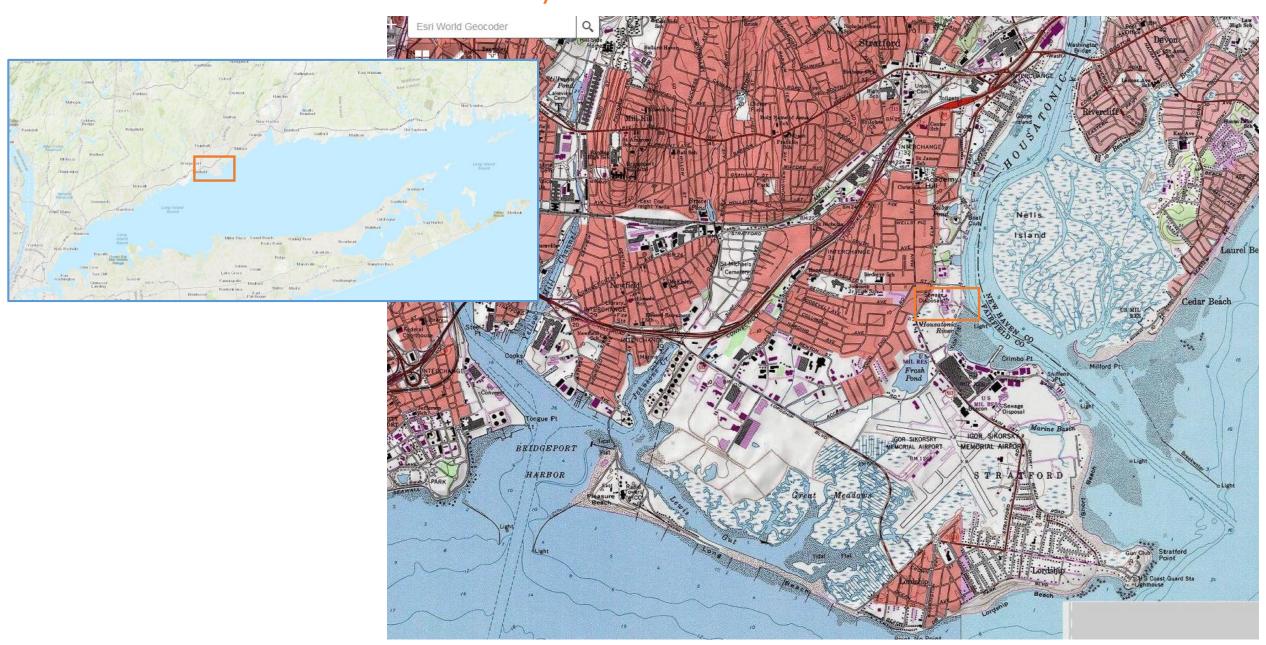
Dan Stapleton, P.E. Sam Bell

..... Building Coastal Resiliency

http://www.townofstratford.com/filestorage/39879/40866/Stratford_Coastal_Res iliency_Plan_-_Final_Report_12-21-2016_Electronic_-_optimized.pdf

Town of Stratford Coastal Community Resilience Plan

December 2016



Prepared for: Town of Stratford, Connecticut

Prepared By: GZA GeoEnvironmental, Inc.

28 Offices Nationwide www.gza.com

About the Town:

- 19 square miles
- 51,490 people
- 20,290 households
- 2,600 people per square mile
- 65% households are families
- avg 3.18 people per household
- Average Age: 43 yo
- 9,200 people: elderly
- 10,690 people: <17 yo
- Median income: \$66,361

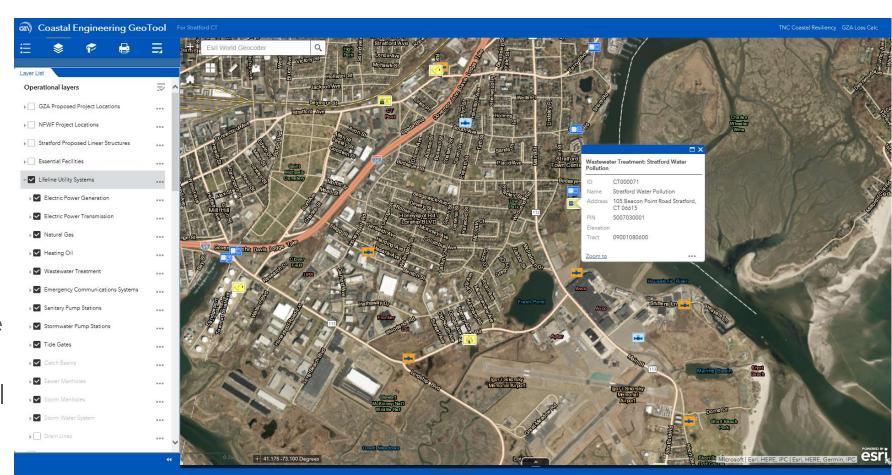
Town Center

Asset Value Distribution

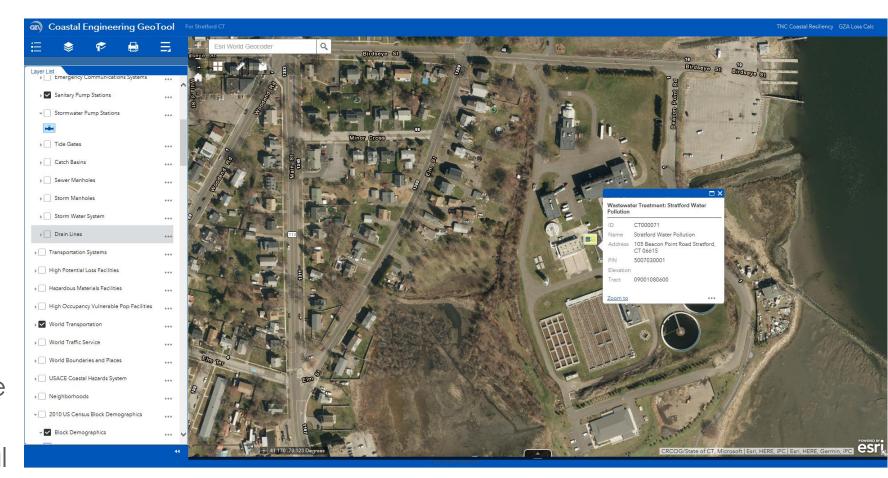
Occupancy	Exposure (\$1000)	Percent of Total			
Residential	4,804,160	71.5%			
Commercial	1,184,257	17.6%			
Industrial	517,257	7.7%			
Agricultural	14,010	0.2%			
Religion	102,683	1.5%			
Government	33,465	.5%			
Education	64,294	1%			
Total	6,720,103	100%			

"Risk-Informed Decision Making"

Risk = An event x probability of occurrence x resulting consequences


Five Steps:

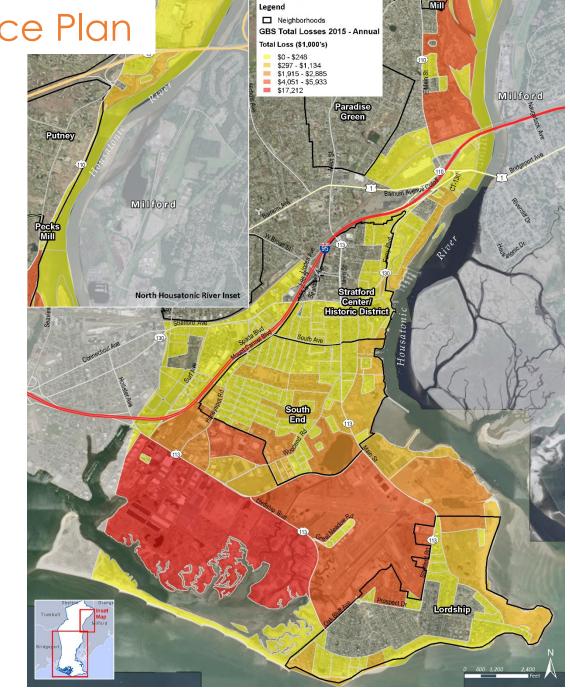
- I. Coastal Hazards Characterization
- II. Vulnerability Assessment
- III. Public and Stakeholder Outreach
- IV. Resiliency Strategies, Actions and Projects
- V. Plan Implementation

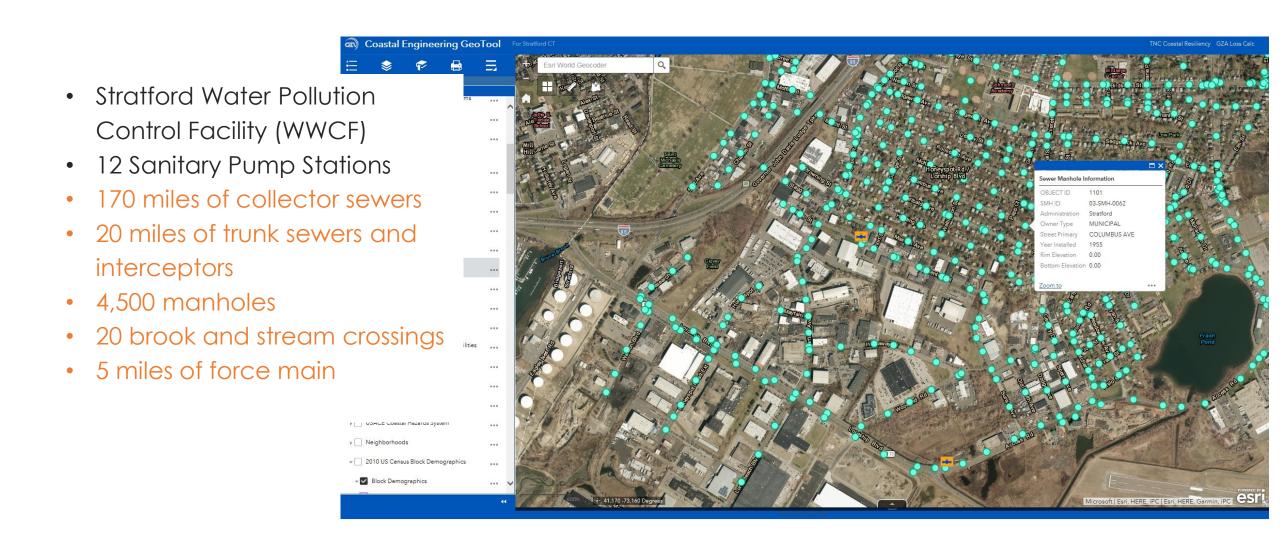

Town Assets Inventory:

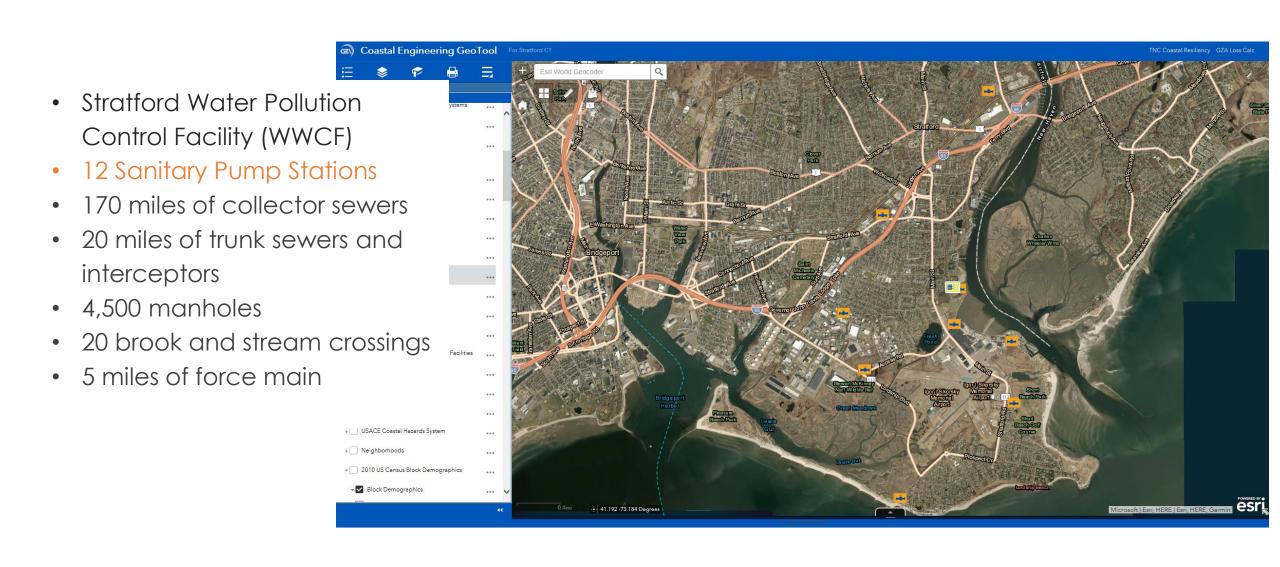
- ✓ Essential Facilities
- ✓ Lifeline Utilities
- ✓ Transportation
- ✓ High Potential Loss Facilities
- ✓ Hazardous Material Facilities
- ✓ High Occupancy/Vulnerable Population Facilities
- ✓ Private and commercial property
- ✓ Natural Resources

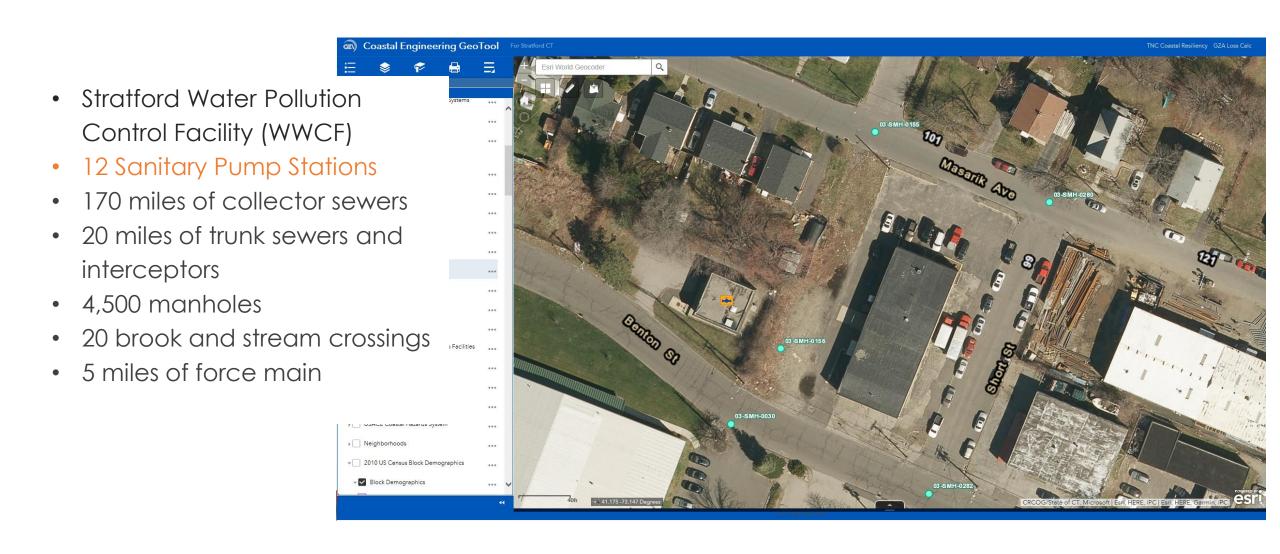
Vulnerability Assessment:

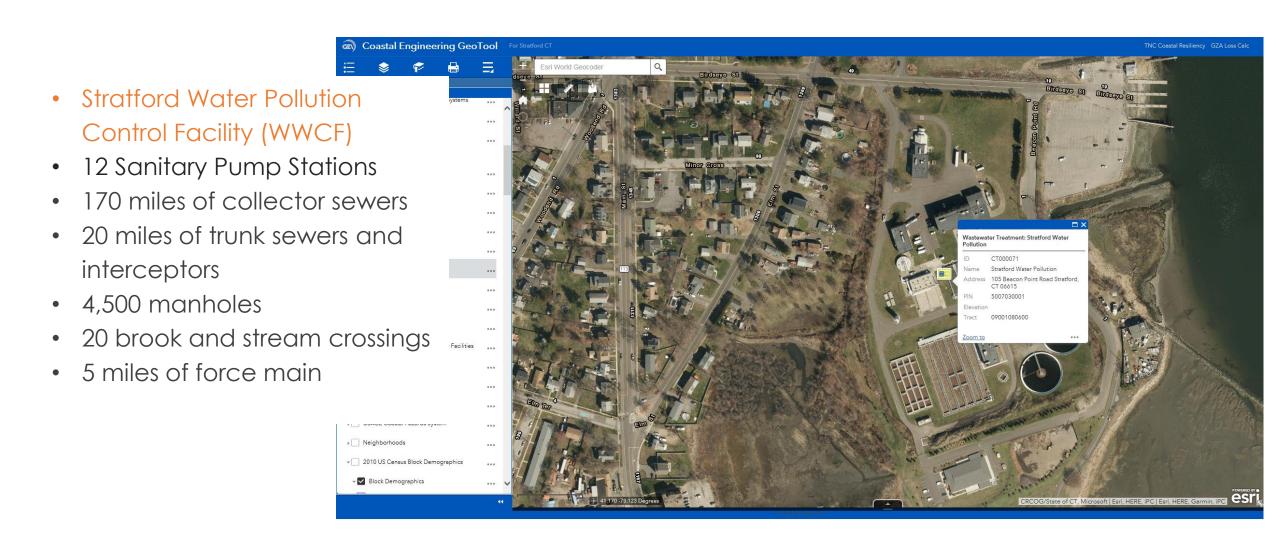
- ✓ Essential Facilities
- ✓ Lifeline Utilities
 - ✓ Water Pollution Control Facility
- ✓ Transportation
- ✓ High Potential Loss Facilities
- ✓ Hazardous Material Facilities
- ✓ High Occupancy/Vulnerable Population Facilities
- ✓ Private and commercial property
- ✓ Natural Resources

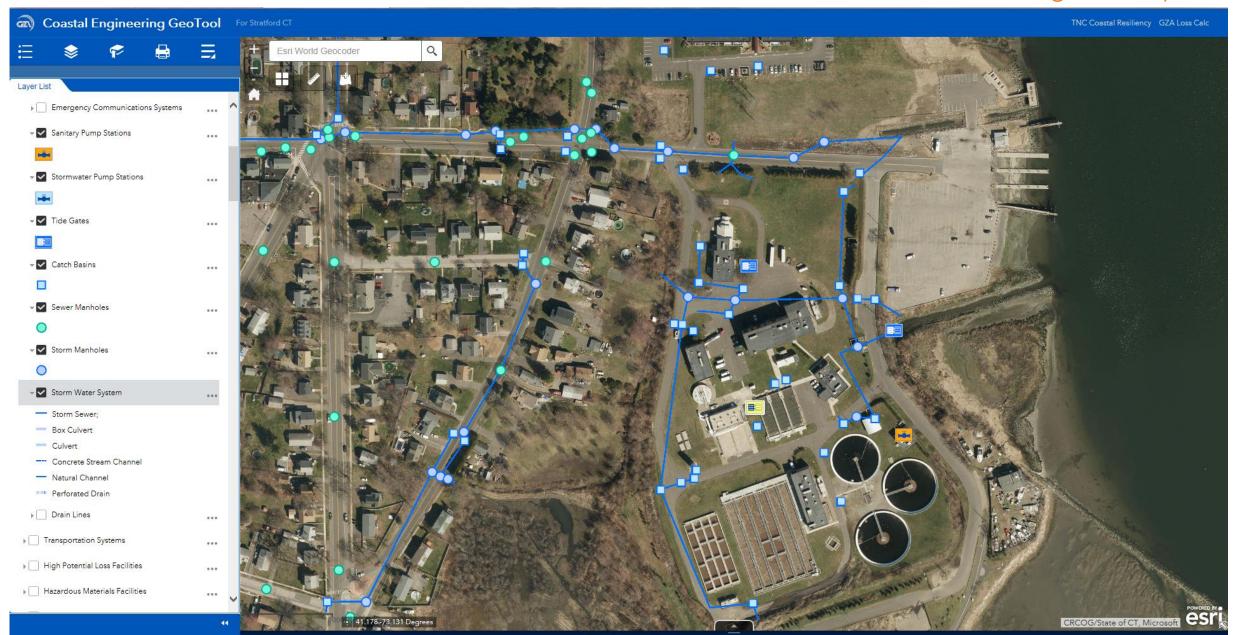

POTENTIAL LOSS ESTIMATES ANALYZED IN HAZUS:

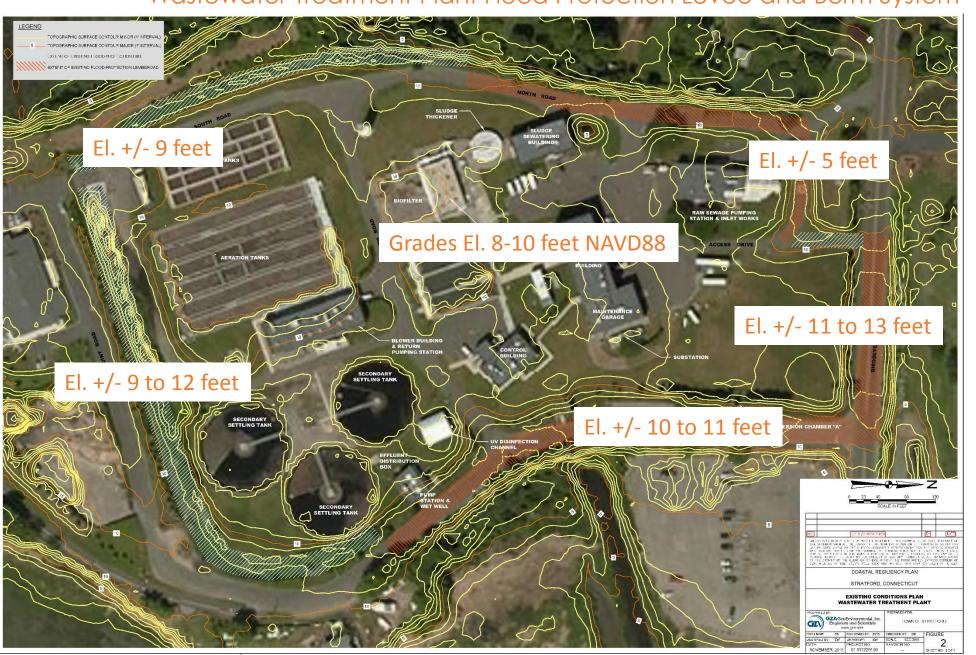

✓ DIRECT COSTS


Physical damage to critical facilities and infrastructure.

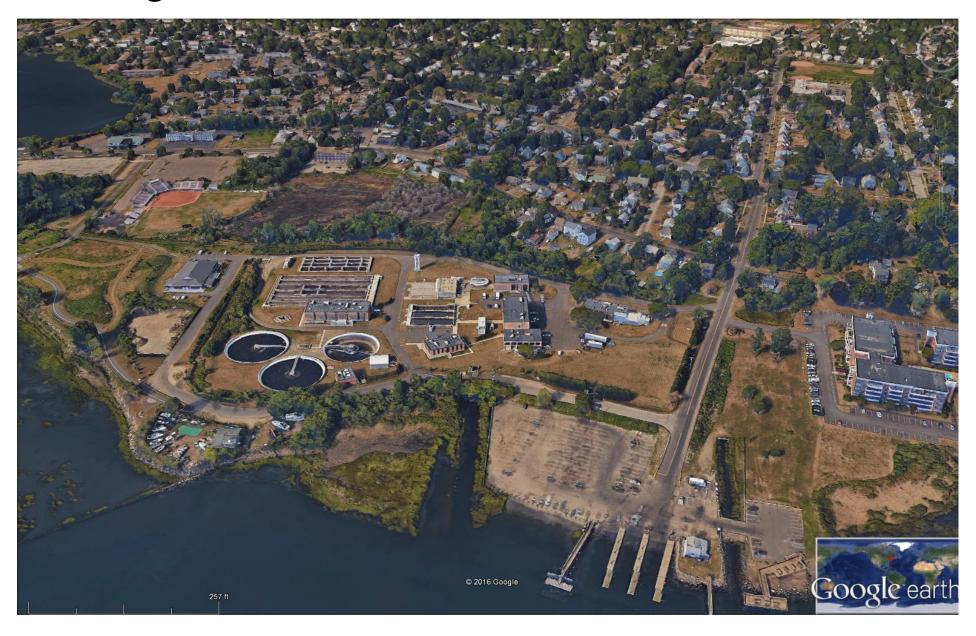

✓ CONSEQUENTIAL COSTS


- Economic loss including lost jobs, business interruptions, repair and reconstruction costs;
- Social impacts, including estimates of shelter requirements and displaced households
- Environmental impacts, including loss of wetlands, riparian and open space.

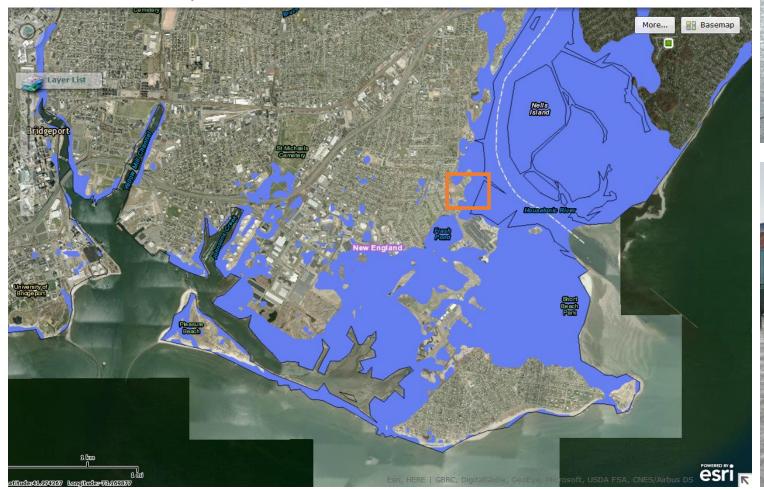

- Stratford Water Pollution Control Facility (WWCF)
 - Capacity:
 - 11.5 mgd average
 - 19.5 mgd maximum
 - 24/7 operations
 - Discharge: Housatonic River
 - \$62M upgrade mun. bond


Stratford Water Pollution Control Facility

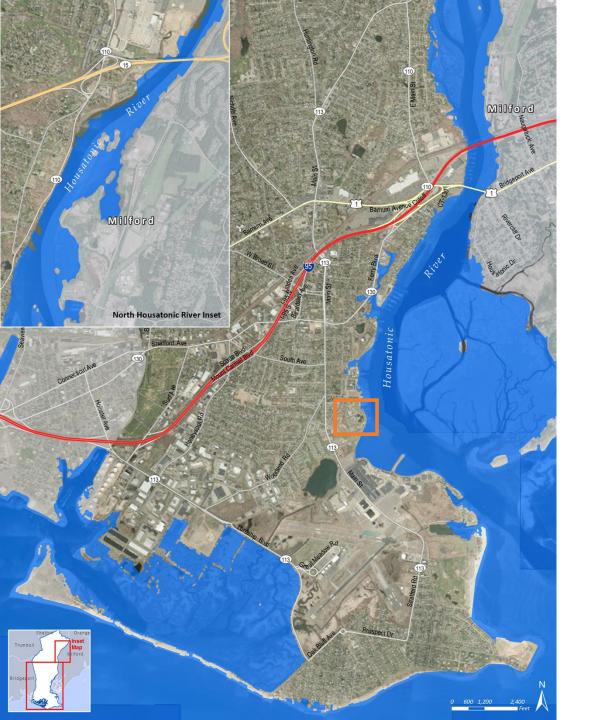
Stormwater Management System



Wastewater Treatment Plant Flood Protection Levee and Berm System

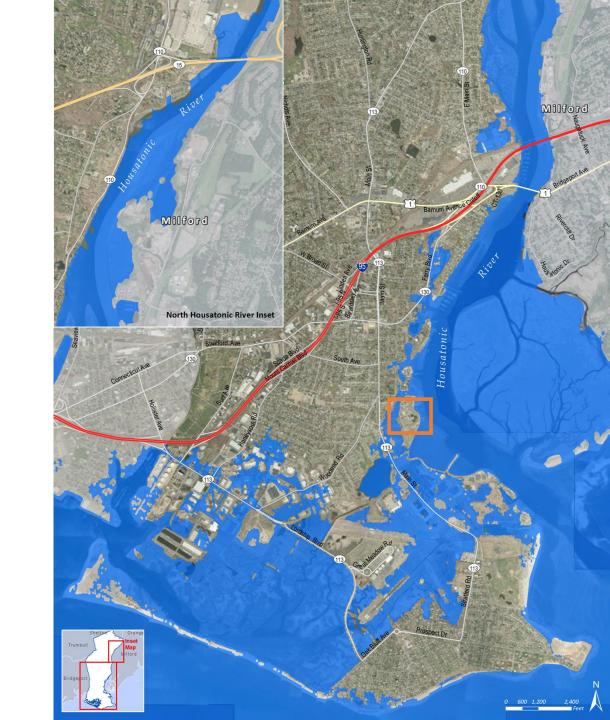

- Levee and berm crest elevations: +/-10 to 13 feet
- 90% perimeter coverage
- Gaps at plant entrances
- Constructed circa 1970s

Coastal Site Setting



Hurricane Sandy

Time Step 3


Time Step 4

Time Step 5

Time Step 6

Hurricane Sandy

Applicable Coastal Flood-Frequency Data (Stillwater Elevations, NAVD88, ft)

Recurrence Interval	1-yr	2-yr	5-yr	10-yr	20-yr	50-yr	100-yr	200-yr	500-yr	1,000-yr
2015:										
NOAA Mean	5.2	6.2	6.8	7.4	7.8	8.4	9.1	-	-	-
NOAA UB	-	-	-	7.9	8.7	10.0	11.4	-	-	-
NOAA LB	-	-	-	6.9	7.1	7.2	7.9	-		-
FEMA	-	-	-	7.7	-	9.2	9.8	-	11.1	-
USACE Mean	5.8	6.7	8	8.8	9.6	10.7	11.7	13	15	16.4
USACE UB	8.8	9.7	10.9	11.8	12.7	14.1	15.5	16.9	18.8	20.3
USCAE LB	2.7	3.7	5.1	5.9	6.5	7.3	7.9	9.1	11.1	12.5
2040:										
USACE Mean (Low SLR)	6	6.9	8.2	9	9.8	10.9	11.9	13.2	15.2	16.6
USACE Mean (Int SLR)	6.2	7.1	8.4	9.16	10.0	11.1	12.1	13.4	15.4	16.8
USACE Mean (High SLR)	6.7	7.6	8.9	9.66	10.5	11.6	12.6	13.9	15.9	17.3
2065:										
USACE Mean (Low SLR)	6.2	7.1	8.4	9.2	10.0	11.1	12.1	13.4	15.4	16.8
USACE Mean (Int SLR)	6.6	7.5	8.8	9.63	10.4	11.5	12.5	13.8	15.8	17.2
USACE Mean (High SLR)	8.0	8.98	10.2	10.98	11.8	12.9	13.9	15.2	17.2	18.6
2115:										
USACE Mean (Low)	6.6	7.5	8.8	9.6	10.4	11.5	12.5	13.8	15.8	17.2
USACE Mean (Int SLR)	7.9	8.8	10.1	10.9	11.7	12.8	13.8	15.1	17.1	18.5
USACE Mean (High SLR)	12.0	12.9	14.2	15.0	15.8	16.9	17.9	18.2	21.2	22.6

USACE NACCS 100-year return period flood

USACE NACCS 500-year return period flood

100-year return period flood Significant Wave Height(ft)

FEMA Base Flood Elevations (100-year return period flood w/ wave effects)

Effects of Sea Level Rise on Coastal Flood-Frequency Data (Stillwater Elevations, NAVD88, ft)

Recurrence Interval	1-yr	2-yr	5-yr	10-yr	20-yr	50-yr	100-yr	200-yr	500-yr	1,000-yr
2015:										
NOAA Mean	5.2	6.2	6.8	7.4	7.8	8.4	9.1	-	-	-
NOAA UB	-	-	-	7.9	8.7	10.0	11.4	-	-	-
NOAA LB	-	-	-	6.9	7.1	7.2	7.9	-	-	-
FEMA	-	-	-	7.7	-	9.2	9.8	-	11.1	-
USACE Mean	5.8	6.7	8	8.8	9.6	10.7	11.7	13	15	16.4
USACE UB	8.8	9.7	10.9	11.8	12.7	14.1	15.5	16.9	18.8	20.3
USCAE LB	2.7	3.7	5.1	5.9	6.5	7.3	7.9	9.1	11.1	12.5
2040:										
USACE Mean (Low SLR)	6	6.9	8.2	9	9.8	10.9	11.9	13.2	15.2	16.6
USACE Mean (Int SLR)	6.2	7.1	8.4	9.16	10.0	11.1	12.1	13.4	15.4	16.8
USACE Mean (High SLR)	6.7	7.6	8.9	9.66	10.5	11.6	12.6	13.9	15.9	17.3
2065:		7.1	0.4	0.0	10.0	11.1	10.1	10.4	15.4	1.4.0
USACE Mean (Low SLR)	6.2	7.1	8.4	9.2	10.0	11.1	12.1	13.4	15.4	16.8
USACE Mean (Int SLR)	6.6	7.5	8.8	9.63	10.4	11.5	12.5	13.8	15.8	17.2
USACE Mean (High SLR)	8.0	8.98	10.2	10.98	11.8	12.9	13.9	15.2	17.2	18.6
2115:										
USACE Mean (Low)	6.6	7.5	8.8	9.6	10.4	11.5	12.5	13.8	15.8	17.2
USACE Mean (Int SLR)	7.9	8.8	10.1	10.9	11.7	12.8	13.8	15.1	17.1	18.5
USACE Mean (High SLR)	12.0	12.9	14.2	15.0	15.8	16.9	17.9	18.2	21.2	22.6

Coastal Flood Vulnerability

Primary:

- flood elevations exceeding the berm crest elevation (stillwater flood inundation, wave run-up and overtopping)
- floodwaters entering into the site via the low-lying facility entrances and egresses
- salt spray

Secondary:

- potential for temporary increase in groundwater elevation during coastal flood events (potentially above the ground surface or flooding below-grade structures)
- backflow through surcharged storm drains
- localized intense precipitation onto the site footprint
- wind

Flood Impact:

- flood inundation
- hydrostatic loads
- hydrodynamic loads
- debris impact loads

Preliminary Average Annualized Loss (AAL):

- only facility damage costs (did not consider consequential costs associated with disruption or loss of service and/or environmental costs associated with an uncontrolled discharge of untreated effluent to the Housatonic River and surrounding wetlands)
- project plant cost basis (i.e., vulnerable property value including buildings and equipment) of \$50 million
- depth-damage curve applicable to a small treatment plant (10 to 50 MGD)
- existing exposure grade of Elevation 8 feet NAVD88
- 40-year evaluation period life (2016 through 2056)
- current sea levels (i.e., sea level rise is not considered)
- only stillwater flood inundation is considered
- considered both effective FEMA FIRM and mean USACE NACCS flood-frequency

Current estimated average annual loss (AAL) ranges from about \$145,000 (FEMA) to \$840,000 (NACCS) per year. Over the 40 year evaluation life, the expected total life cycle loss (40 years) is about \$6M to \$33.5M.

Flood Protection

Flood Protection Approach

- Localized, system and component flood protection (around individual buildings, equipment, etc.) using:
 - a. Permanent flood protection measures (e.g., flood walls; building flood proofing, raising equipment)
 - b. Deployable measures (temporary flood walls, flood gates, etc.)
 - c. Combination of the above
- 2. Perimeter flood protection (around the site) using:
 - a. Permanent measures (levees, flood walls)
 - b. Deployable measures (temporary barriers)
 - c. Combination of the above

Flood Protection Alternatives

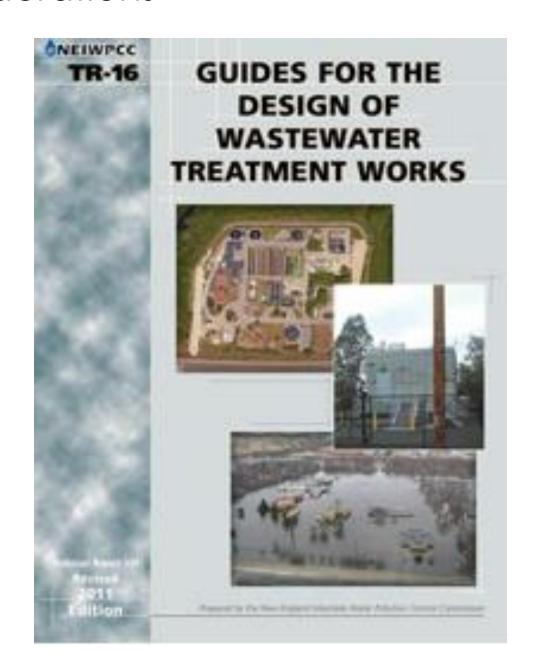
- 1. Permanent measures:
 - a. Increase dike and levee crest elevations:
 - i. Increase crest elevation of full dike/levee width
 - ii. Increase crest elevation for a partial width
 - b. Construct a combined levee/flood wall (without raising the crest elevations of the dike/levees), using:

```
Sheetpile wall:
Steel
Vinyl
```

Concrete L-wall

- 1. Temporary measures, utilizing temporary, deployed perimeter flood protection:
 - a. Inflatable bladder systems
 - b. Filled bag systems
 - c. Deployable flood barriers (e.g., Tiger Dams, Stop Log systems, etc.)

Elevation of Flood Protection Considerations


Regulatory/Technical Guidance

ASCE24:

- Flood Design Class 3 (critical lifeline facility)
- Coastal AE Zone
- BFE +2 feet (currently, Elevations 15 to 16 feet)

TR-16:

- 1. uninterrupted operation during 100-year flood
- 2. above or protected against the structural, process, and electrical equipment damage that might occur in a 100-year flood elevation
- 3. critical equipment protected against damage up to a water surface elevation that is 3 feet above the 100-year flood elevation
- 4. non-critical equipment protected against damage up to a water surface elevation that is 2 feet above the 100-year flood elevation
- 5. backup power supply for critical equipment emergency power generation or an alternative power source

Elevation of Flood Protection Considerations Benefit/Cost Analysis

Reduced Losses:

<u>Elevation 10 feet NAVD88:</u> The estimated average annual loss (AAL) is about \$132,000 to \$437,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about \$5.2M to \$17.5M.

<u>Elevation 11 feet NAVD88:</u> The estimated average annual loss (AAL) is about \$83,000 to \$302,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about \$3.3M to \$12.1M.

<u>Elevation 12 feet NAVD88:</u> The estimated average annual loss (AAL) is about \$50,000 to \$180,555. Over the 40 year evaluation life, the expected total life loss (40 years) is about \$2M to \$7.2M.

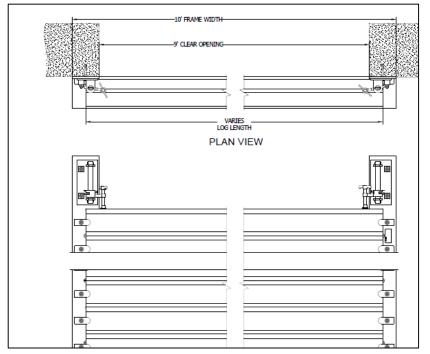
<u>Elevation 13 feet NAVD88:</u> The estimated average annual loss (AAL) is about \$14,000 to \$145,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about \$0.5M to \$5.7M.

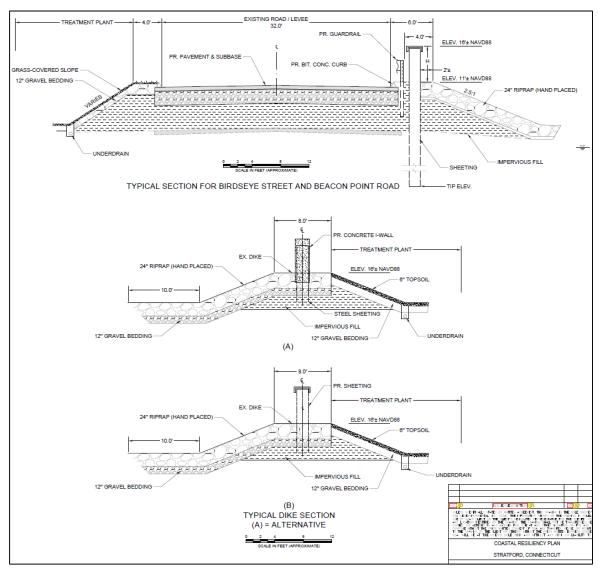
<u>Elevation 14 feet NAVD88:</u> The estimated average annual loss (AAL) is about <\$10,000 to \$130,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about <\$0.5M to \$5M.

<u>Elevation 15 feet NAVD88:</u> The estimated average annual loss (AAL) is about 0 to \$105,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about 0 to \$4.2M.

<u>Elevation 16 feet NAVD88:</u> The estimated average annual loss (AAL) is about 0 to \$50,000. Over the 40 year evaluation life, the expected total life loss (40 years) is about 0 to \$2M.

Elevation 17 feet NAVD88: The estimated average annual loss (AAL) is essentially zero.


Estimated Cost: \$5M to \$7M


Permanent Flood Protection Alternative

Phase II

Phase I

Phase III

Adaptation measures to respond to climate change